Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorI-Hsuan Wuen
dc.contributor.author吳亦軒zh_TW
dc.date.accessioned2021-07-09T15:53:48Z-
dc.date.available2029-07-16
dc.date.copyright2019-07-23
dc.date.issued2019
dc.date.submitted2019-07-16
dc.identifier.citation1. Bruil, A., et al., The mechanisms of leukocyte removal by filtration. Transfus Med Rev, 1995. 9(2): p. 145-66.
2. Silliman, C.C., D.R. Ambruso, and L.K. Boshkov, Transfusion-related acute lung injury. Blood, 2005. 105(6): p. 2266-73.
3. Toy, P., et al., Transfusion-related acute lung injury: definition and review. Crit Care Med, 2005. 33(4): p. 721-6.
4. Looney, M.R., B.M. Gilliss, and M.A. Matthay, Pathophysiology of transfusion-related acute lung injury. Curr Opin Hematol, 2010. 17(5): p. 418-23.
5. Shander, A. and M. Javidroozi, A reductionistic approach to aged blood. Anesthesiology, 2010. 113(1): p. 1-3.
6. Triulzi, D.J., Transfusion-related acute lung injury: current concepts for the clinician. Anesth Analg, 2009. 108(3): p. 770-6.
7. Shaz, B.H., S.R. Stowell, and C.D. Hillyer, Transfusion-related acute lung injury: from bedside to bench and back. Blood, 2011. 117(5): p. 1463-71.
8. Popovsky, M.A., Transfusion-related acute lung injury: three decades of progress but miles to go before we sleep. Transfusion, 2015. 55(5): p. 930-4.
9. Keller-Stanislawski, B., et al., Frequency and severity of transfusion-related acute lung injury--German haemovigilance data (2006-2007). Vox Sang, 2010. 98(1): p. 70-7.
10. Peters, A.L., et al., Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev, 2015. 29(1): p. 51-61.
11. 醫療財團法人台灣血液基金會107年年報.
12. Silliman, C.C., et al., Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors. Blood, 2003. 101(2): p. 454-62.
13. Popovsky, M.A. and S.B. Moore, Diagnostic and pathogenetic considerations in transfusion-related acute lung injury. Transfusion, 1985. 25(6): p. 573-7.
14. Wallis, J.P., Transfusion-related acute lung injury (TRALI)--under-diagnosed and under-reported. Br J Anaesth, 2003. 90(5): p. 573-6.
15. Rana, R., et al., Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study. Transfusion, 2006. 46(9): p. 1478-83.
16. Chapman, C.E., et al., Ten years of hemovigilance reports of transfusion-related acute lung injury in the United Kingdom and the impact of preferential use of male donor plasma. Transfusion, 2009. 49(3): p. 440-52.
17. Eder, A.F., et al., Effective reduction of transfusion-related acute lung injury risk with male-predominant plasma strategy in the American Red Cross (2006-2008). Transfusion, 2010. 50(8): p. 1732-42.
18. van Stein, D., et al., Transfusion-related acute lung injury reports in the Netherlands: an observational study. Transfusion, 2010. 50(1): p. 213-20.
19. Ozier, Y., et al., Transfusion-related acute lung injury: reports to the French Hemovigilance Network 2007 through 2008. Transfusion, 2011. 51(10): p. 2102-10.
20. Suassuna, J.H., et al., Noncardiogenic pulmonary edema triggered by intravenous immunoglobulin in cancer-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Nephron, 1997. 77(3): p. 368-70.
21. Kleinman, S., et al., Toward an understanding of transfusion-related acute lung injury: statement of a consensus panel. Transfusion, 2004. 44(12): p. 1774-89.
22. Welsby, I.J., et al., The relationship of plasma transfusion from female and male donors with outcome after cardiac surgery. J Thorac Cardiovasc Surg, 2010. 140(6): p. 1353-60.
23. Koch, C.G., et al., Morbidity and mortality risk associated with red blood cell and blood-component transfusion in isolated coronary artery bypass grafting. Crit Care Med, 2006. 34(6): p. 1608-16.
24. Koch, C.G., et al., Persistent effect of red cell transfusion on health-related quality of life after cardiac surgery. Ann Thorac Surg, 2006. 82(1): p. 13-20.
25. Koch, C.G., et al., Duration of red-cell storage and complications after cardiac surgery. N Engl J Med, 2008. 358(12): p. 1229-39.
26. Edgren, G., et al., Duration of red blood cell storage and survival of transfused patients (CME). Transfusion, 2010. 50(6): p. 1185-95.
27. Eikelboom, J.W., et al., Duration of red cell storage before transfusion and in-hospital mortality. Am Heart J, 2010. 159(5): p. 737-743 e1.
28. Holness, L., et al., Fatalities caused by TRALI. Transfus Med Rev, 2004. 18(3): p. 184-8.
29. Zallen, G., et al., Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg, 1999. 178(6): p. 570-2.
30. Sut, C., et al., Duration of red blood cell storage and inflammatory marker generation. Blood Transfus, 2017. 15(2): p. 145-152.
31. Hod, E.A. and S.L. Spitalnik, Harmful effects of transfusion of older stored red blood cells: iron and inflammation. Transfusion, 2011. 51(4): p. 881-5.
32. Zimrin, A.B. and J.R. Hess, Current issues relating to the transfusion of stored red blood cells. Vox Sang, 2009. 96(2): p. 93-103.
33. D'Alessandro, A., et al., An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion, 2015. 55(1): p. 205-19.
34. Zubair, A.C., Clinical impact of blood storage lesions. Am J Hematol, 2010. 85(2): p. 117-22.
35. Holme, S., Current issues related to the quality of stored RBCs. Transfus Apher Sci, 2005. 33(1): p. 55-61.
36. Dey-Hazra, E., et al., Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag, 2010. 6: p. 1125-33.
37. Tseng, C.C., et al., Levels of circulating microparticles in lung cancer patients and possible prognostic value. Dis Markers, 2013. 35(5): p. 301-10.
38. Mezentsev, A., et al., Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am J Physiol Heart Circ Physiol, 2005. 289(3): p. H1106-14.
39. Martinez, M.C., et al., Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood, 2006. 108(9): p. 3012-20.
40. Vasina, E.M., et al., Aging- and activation-induced platelet microparticles suppress apoptosis in monocytic cells and differentially signal to proinflammatory mediator release. Am J Blood Res, 2013. 3(2): p. 107-23.
41. Lu, J.H., et al., Phylogenetic analysis of eight genes of H9N2 subtype influenza virus: a mainland China strain possessing early isolates' genes that have been circulating. Virus Genes, 2005. 31(2): p. 163-9.
42. Chung, J., et al., Identification of tissue factor and platelet-derived particles on leuklocytes during cardiopulmonary bypass by flow cytometry and immunoelectron microscopy. Thrombosis and Haemostasis, 2007. 98(2): p. 368-374.
43. Ferraris, V.A., Microparticles: The good, the bad, and the ugly. Journal of Thoracic and Cardiovascular Surgery, 2015. 149(1): p. 312-313.
44. Tempo, J.A., et al., Platelet Microvesicles (Microparticles) in Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2016. 30(1): p. 222-228.
45. Rhodes, N.P., et al., Activation status of platelet aggregates and platelet microparticles shed in sheared whole blood. Journal of Materials Science-Materials in Medicine, 1997. 8(12): p. 747-751.
46. Westerman, M. and J.B. Porter, Red blood cell-derived microparticles: An overview. Blood Cells Molecules and Diseases, 2016. 59: p. 134-139.
47. Wang, Z.T., Z. Wang, and Y.W. Hu, Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 2016. 248: p. 10-16.
48. McGinn, C.M., et al., Microparticles: A Pivotal Nexus in Vascular Homeostasis and Disease. Current Clinical Pharmacology, 2016. 11(1): p. 28-42.
49. Alexandru, N., et al., Microparticles: From Biogenesis to Biomarkers and Diagnostic Tools in Cardiovascular Disease. Current Stem Cell Research & Therapy, 2017. 12(2): p. 89-102.
50. Cognasse, F., et al., The role of microparticles in inflammation and transfusion: A concise review. Transfus Apher Sci, 2015. 53(2): p. 159-67.
51. Morel, O., et al., Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol, 2006. 26(12): p. 2594-604.
52. Mesri, M. and D.C. Altieri, Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem, 1999. 274(33): p. 23111-8.
53. Brill, A., et al., Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res, 2005. 67(1): p. 30-8.
54. Lion, N., et al., Stored red blood cells: a changing universe waiting for its map(s). J Proteomics, 2010. 73(3): p. 374-85.
55. Piccin, A., W.G. Murphy, and O.P. Smith, Circulating microparticles: pathophysiology and clinical implications. Blood Reviews, 2007. 21(3): p. 157-171.
56. Diamant, M., et al., Cellular microparticles: new players in the field of vascular disease? Eur J Clin Invest, 2004. 34(6): p. 392-401.
57. VanWijk, M.J., et al., Microparticles in cardiovascular diseases. Cardiovasc Res, 2003. 59(2): p. 277-87.
58. Ogata, N., et al., Increased levels of platelet-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract, 2005. 68(3): p. 193-201.
59. van Beers, E.J., et al., Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica, 2009. 94(11): p. 1513-9.
60. Ataga, K.I., Hypercoagulability and thrombotic complications in hemolytic anemias. Haematologica, 2009. 94(11): p. 1481-4.
61. Soriano, A.O., et al., Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med, 2005. 33(11): p. 2540-6.
62. Berckmans, R.J., et al., Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost, 2001. 85(4): p. 639-46.
63. Horstman, L.L. and Y.S. Ahn, Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol, 1999. 30(2): p. 111-42.
64. Flaumenhaft, R., et al., Tetanus toxin inhibits activation-dependent P-selectin surface expression in permeabilized platelets. Blood, 1997. 90(10): p. 1241-1241.
65. Flaumenhaft, R., Formation and fate of platelet microparticles. Blood Cells Molecules and Diseases, 2006. 36(2): p. 182-187.
66. Wolf, P., The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haematology, 1967. 13(3): p. 269-288.
67. Warren, B.A. and O. Vales, The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol, 1972. 53(2): p. 206-15.
68. Owens, M.R., The role of platelet microparticles in hemostasis. Transfus Med Rev, 1994. 8(1): p. 37-44.
69. Ogata, N., et al., Elevation of monocyte-derived microparticles in patients with diabetic retinopathy. Diabetes Res Clin Pract, 2006. 73(3): p. 241-8.
70. Regev-Rudzki, N., et al., Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell, 2013. 153(5): p. 1120-33.
71. Rubin, O., et al., Red blood cell microparticles: clinical relevance. Transfus Med Hemother, 2012. 39(5): p. 342-7.
72. Huhtamaki, T., et al., Surface-wetting characterization using contact-angle measurements. Nat Protoc, 2018. 13(7): p. 1521-1538.
73. Molecular Diagnosis of Human Papillomavirus.
74. Rubin, O., et al., Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang, 2008. 95(4): p. 288-97.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76527-
dc.description.abstract血液中含有許來自不同細胞產生之細胞微小顆粒,相關文獻指出血液及血品中的細胞微小顆粒會引起輸血反應及輸血後的感染疾病。為了降低輸血治療造成的不良反應及疾病感染,去除治療血品中細胞微小顆粒含量是主要的目標。迄今,甚少文獻探討移除血品所產生之細胞微小顆粒,且目前臨床使用的血液過濾器也不具有除去細胞微小顆粒的功能。故本研究的目的在於開發出可去除細胞微小顆粒專用之過濾器,將造成輸血反應的因子濾除,有效減少輸血反應。本研究以PBT不織布,作為固定幾丁聚醣的基材,探討其固定後幾丁聚醣前後之差異,並以掃描式電子顯微鏡觀察PBT不織布其表面形貌,量測接觸角,並比較材料親疏水性的影響。由於不織布之高孔隙度,幾丁聚醣改質後增加親水性,提供吸附血中細胞微小顆粒的機會,我們利用儲存的血品釋放細胞微小顆粒,檢測血液中細胞微小顆粒的釋放及使用流式細胞儀對其分析,再利用雙重染色辨識細胞微小顆粒,並建立細胞微小顆粒計數方式,比較其過濾前及過濾後之差異,此結果可提供臨床上減少輸血相關副作用作為探討。zh_TW
dc.description.abstractBlood contains many microparticles (MPs), also sometimes called microvesicles, derived from different cell types. Including platelets (PLTs), red blood cells(RBCs), white blood cells (WBCs), and endothelial cells in the circulation or during blood processing. Many papers have proven that transfusion reactions after transfusions are caused by microparticles in blood. In order to decrease above side effects, removal microparticles of blood products is the most important aspect. Few studies have addressed this problem and current filters used for blood filter are not designed to effectively remove microparticles. This study aims at designing a filter that can effectively remove these cellular microparticles and other cellar debris that are generated during blood storage. Established manufacturing method of modified PBT(polybutylenes terephthalate) non-woven for blood filtration. In order to improve the hydrophilicity and hemocompatibility of PBT fibers. PBT non-woven were treated with chitosan. The surface modified PBT fibers was analyzed by scanning electron microscopy, water contact angle. Chitosan was immobilized on the fabric fibers surfaces very homogeneously. The hydrophilicity of the composite PBT non-woven surface was improved. Overall results of this study demonstrated that the immobilization of chtiosan onto the surface of PBT fiber would be beneficial to improve the hydrophilicity and hemocompatibility.en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:53:48Z (GMT). No. of bitstreams: 1
ntu-108-R04548066-1.pdf: 3441756 bytes, checksum: 729466a099cb582c48202cd89c7152ab (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 ix
第一章 文獻回顧 1
1.1 輸血安全 1
1.2 輸血相關之急性肺病變(TRALI)病因與發病機制 3
1.3 TRALI流行病學 6
1.4 儲存期間紅血球發生之變化 7
1.5 血液中所產生之細胞微小顆粒 9
1.5.1 血小板細胞微小顆粒 (Platelet-derived microparticles; PMPs ) 10
1.6 幾丁聚醣 (Chitosan ) 12
1.7 不織布簡介 14
1.8 研究動機 15
第二章 實驗材料與方法 17
2.1 實驗架構 17
2.2 實驗材料 19
2.2.1 化學藥品 19
2.2.2 實驗儀器 20
2.2.3 實驗材料 23
2.3 試劑、藥品製備 24
2.4 實驗方法 26
2.4.1 不織布預處理 26
2.4.2 幾丁聚醣不織布製備 26
2.4.3 SEM 26
2.4.4 接觸角 27
2.4.5 親疏水性分析 27
2.4.6 血液樣品 28
2.4.7 產生microparticles的方式 28
2.4.8 流式細胞儀分析 28
2.4.9 BD Trucount Tubes於血液細胞微粒計數上的應用 30
2.4.10 酵素免疫分析法ELISA assay 31
2.4.11 蛋白質測定 34
2.4.12 統計分析 34
第三章 實驗結果與討論 36
3.1 PBT不織布塗佈幾丁聚醣結果 36
3.2 SEM分析表面改質結果 36
3.3 接觸角 37
3.4 親疏水性分析 37
3.5 流式細胞儀 37
3.6 ELISA assay 39
3.7 蛋白質測定 39
第四章 結論 40
圖 41
表 50
參考文獻 51
dc.language.isozh-TW
dc.title探討添加幾丁聚醣於聚對苯二甲酸丁二酯不織布在血液過濾器上的應用zh_TW
dc.titleStudy on the Effect of Chitosan Applying on Polybutylene Terephthalate (PBT) Non-Woven for Blood Filtration.en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor羅仕錡(Shyh-Chyi Lo)
dc.contributor.oralexamcommittee李亦淇(I-Chi Lee)
dc.subject.keyword細胞微小顆粒,PBT,PBT不織布,幾丁聚醣,流式細胞儀,zh_TW
dc.subject.keywordmicroparticles,PBT non-woven,chitosan,filtration,flow cytometry,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201901462
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2029-07-16-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R04548066-1.pdf
  此日期後於網路公開 2029-07-16
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved