請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76516
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉逸軒(I-Hsuan Liu) | |
dc.contributor.author | Chia-Teng Chang | en |
dc.contributor.author | 張家騰 | zh_TW |
dc.date.accessioned | 2021-07-09T15:53:36Z | - |
dc.date.available | 2022-08-26 | |
dc.date.copyright | 2019-08-26 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-12 | |
dc.identifier.citation | Abraham, J.A., Mergia, A., Whang, J.L., Tumolo, A., Friedman, J., Hjerrild, K.A., Gospodarowicz, D., and Fiddes, J.C. (1986). Nucleotide-sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth-factor. Science 233, 545-548.
Amaya, E., Musci, T.J., and Kirschner, M.W. (1991). Expression of a dominant negative mutant of the Fgf receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257-270. Arai, T., Parker, A., Busby, W., Jr., and Clemmons, D.R. (1994). Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J. Biol. Chem. 269, 20388-20393. Bachvarova, R.F., Crother, B.I., Manova, K., Chatfield, J., Shoemaker, C.M., Crews, D.P., and Johnson, A.D. (2009). Expression of Dazl and Vasa in turtle embryos and ovaries: evidence for inductive specification of germ cells. Evol. Dev. 11, 525-534. Barak, H., Huh, S.H., Chen, S., Jeanpierre, C., Martinovic, J., Parisot, M., Bole-Feysot, C., Nitschke, P., Salomon, R., Antignac, C., et al. (2012). FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev. Cell 22, 1191-1207. Barton, L.J., LeBlanc, M.G., and Lehmann, R. (2016). Finding their way: themes in germ cell migration. Curr. Opin. Cell. Biol. 42, 128-137. Benjamini, Y., Krieger, A.M., and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507. Blaser, H., Eisenbeiss, S., Neumann, M., Reichman-Fried, M., Thisse, B., Thisse, C., and Raz, E. (2005). Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J. Cell Sci. 118, 4027-4038. Blaser, H., Reichman-Fried, M., Castanon, I., Dumstrei, K., Marlow, F.L., Kawakami, K., Solnica-Krezel, L., Heisenberg, C.P., and Raz, E. (2006). Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev. Cell 11, 613-627. Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., Wilson, D., Xu, Q., and Raz, E. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell 132, 463-473. Braat, A.K., Zandbergen, T., van de Water, S., Goos, H.J., and Zivkovic, D. (1999). Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153-167. Burger, J.A., and Peled, A. (2009). CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23, 43-52. Charnaux, N., Brule, S., Hamon, M., Chaigneau, T., Saffar, L., Prost, C., Lievre, N., and Gattegno, L. (2005). Syndecan-4 is a signaling molecule for stromal cell-derived factor-1 (SDF-1)/CXCL12. FEBS J. 272, 1937-1951. Chatfield, J., O'Reilly, M.A., Bachvarova, R.F., Ferjentsik, Z., Redwood, C., Walmsley, M., Patient, R., Loose, M., and Johnson, A.D. (2014). Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 141, 2429-2440. Choi, J.W., Kim, S., Kim, T.M., Kim, Y.M., Seo, H.W., Park, T.S., Jeong, J.W., Song, G., and Han, J.Y. (2010). Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS One 5, e12968. Ciruna, B., and Rossant, J. (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37-49. Coordinators, N.R. (2018). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46, D8-D13. Dai, X., Jin, X., Chen, X., He, J., and Yin, Z. (2015). Sufficient numbers of early germ cells are essential for female sex development in zebrafish. PLoS One 10, e0117824. David, N.B., Sapede, D., Saint-Etienne, L., Thisse, C., Thisse, B., Dambly-Chaudiere, C., Rosa, F.M., and Ghysen, A. (2002). Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc. Natl. Acad. Sci. USA 99, 16297-16302. De Miguel, M.P., Cheng, L., Holland, E.C., Federspiel, M.J., and Donovan, P.J. (2002). Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA 99, 10458-10463. De Smet, F., Tembuyser, B., Lenard, A., Claes, F., Zhang, J., Michielsen, C., Van Schepdael, A., Herbert, J.M., Bono, F., Affolter, M., et al. (2014). Fibroblast growth factor signaling affects vascular outgrowth and is required for the maintenance of blood vessel integrity. Chem. Biol. 21, 1310-1317. de Winter, J.P., ten Dijke, P., de Vries, C.J., van Achterberg, T.A., Sugino, H., de Waele, P., Huylebroeck, D., Verschueren, K., and van den Eijnden-van Raaij, A.J. (1996). Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Mol. Cell Endocrinol. 116, 105-114. Devore, D.L., Horvitz, H.R., and Stern, M.J. (1995). An Fgf receptor signaling pathway is required for the normal-cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 83, 611-620. DiGabriele, A.D., Lax, I., Chen, D.I., Svahn, C.M., Jaye, M., Schlessinger, J., and Hendrickson, W.A. (1998). Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393, 812-817. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C.V., Leung, T., and Raz, E. (2002). Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111, 647-659. Donovan, P.J., Stott, D., Cairns, L.A., Heasman, J., and Wylie, C.C. (1986). Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 44, 831-838. Durcova-Hills, G., Adams, I.R., Barton, S.C., Surani, M.A., and McLaren, A. (2006). The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24, 1441-1449. Evans, T., Wade, C.M., Chapman, F.A., Johnson, A.D., and Loose, M. (2014). Acquisition of germ plasm accelerates vertebrate evolution. Science 344, 200-203. Fletcher, R.B., and Harland, R.M. (2008). The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev. Dyn. 237, 1243-1254. Fritz, R.D., Menshykau, D., Martin, K., Reimann, A., Pontelli, V., and Pertz, O. (2015). SrGAP2-Dependent Integration of Membrane Geometry and Slit-Robo-Repulsive Cues Regulates Fibroblast Contact Inhibition of Locomotion. Dev. Cell 35, 78-92. Gattineni, J., Alphonse, P., Zhang, Q., Mathews, N., Bates, C.M., and Baum, M. (2014). Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am. J. Physiol. Renal. Physiol. 306, F351-358. Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75-79. Godin, I., Wylie, C., and Heasman, J. (1990). Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 108, 357-363. Godin, I., and Wylie, C.C. (1991). TGF beta 1 inhibits proliferation and has a chemotropic effect on mouse primordial germ cells in culture. Development 113, 1451-1457. Gospodarowicz, D. (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249, 123-127. Gospodarowicz, D., Moran, J., Braun, D., and Birdwell, C. (1976). Clonal Growth of Bovine Vascular Endothelial Cells - Fibroblast Growth-Factor as a Survival Agent. P. Natl. Acad. Sci. USA 73, 4120-4124. Goto-Kazeto, R., Saito, T., Takagi, M., Arai, K., and Yamaha, E. (2010). Isolation of teleost primordial germ cells using flow cytometry. Int. J. Dev. Biol. 54, 1487-1492. Goudarzi, M., Strate, I., Paksa, A., Lagendijk, A.K., Bakkers, J., and Raz, E. (2013). On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling. Nat. Genet. 45, 1264-1265. Gritti, A., Parati, E.A., Cova, L., Frolichsthal, P., Galii, R., Wanke, E., Faravelli, L., Morassutti, D.J., Roisen, F., Nickel, D.D., et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091-1100. Gross-Thebing, T., Yigit, S., Pfeiffer, J., Reichman-Fried, M., Bandemer, J., Ruckert, C., Rathmer, C., Goudarzi, M., Stehling, M., Tarbashevich, K., et al. (2017). The vertebrate protein Dead end maintains primordial germ cell fate by inhibiting somatic differentiation. Dev. Cell 43, 704-715. Grzegorski, S.J., Chiari, E.F., Robbins, A., Kish, P.E., and Kahana, A. (2014). Natural variability of Kozak sequences correlates with function in a zebrafish model. PLoS One 9, e108475. Hadari, Y.R., Gotoh, N., Kouhara, H., Lax, I., and Schlessinger, J. (2001). Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc. Natl. Acad. Sci. USA 98, 8578-8583. Hart, K.C., Robertson, S.C., Kanemitsu, M.Y., Meyer, A.N., Tynan, J.A., and Donoghue, D.J. (2000). Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 19, 3309-3320. Hartwig, J., Tarbashevich, K., Seggewiss, J., Stehling, M., Bandemer, J., Grimaldi, C., Paksa, A., Gross-Thebing, T., Meyen, D., and Raz, E. (2014). Temporal control over the initiation of cell motility by a regulator of G-protein signaling. Proc. Natl. Acad. Sci. USA 111, 11389-11394. Harvey, C.D., Ehrhardt, A.G., Cellurale, C., Zhong, H., Yasuda, R., Davis, R.J., and Svoboda, K. (2008). A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad. Sci. USA 105, 19264-19269. Hayashi, K., Lopes, S.M.C.D., and Surani, M.A. (2007). Germ cell specification in mice. Science 316, 394-396. Hayashi, K., Ogushi, S., Kurimoto, K., Shimamoto, S., Ohta, H., and Saitou, M. (2012). Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338, 971-975. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519-532. Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R.A., Shokat, K.M., and Stainier, D.Y.R. (2009). Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294-298. Horstick, E.J., Jordan, D.C., Bergeron, S.A., Tabor, K.M., Serpe, M., Feldman, B., and Burgess, H.A. (2015). Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res. 43, e48. Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. Itoh, N., and Ornitz, D.M. (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563-569. Johnson, A.D., and Alberio, R. (2015). Primordial germ cells: the first cell lineage or the last cells standing? Development 142, 2730-2739. Kalinina, J., Byron, S.A., Makarenkova, H.P., Olsen, S.K., Eliseenkova, A.V., Larochelle, W.J., Dhanabal, M., Blais, S., Ornitz, D.M., Day, L.A., et al. (2009). Homodimerization Controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Mol. Cell Biol. 29, 4663-4678. Kalinina, J., Dutta, K., Ilghari, D., Beenken, A., Goetz, R., Eliseenkova, A.V., Cowburn, D., and Mohammadi, M. (2012). The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 20, 77-88. Kardash, E., Reichman-Fried, M., Maitre, J.L., Boldajipour, B., Papusheva, E., Messerschmidt, E.M., Heisenberg, C.P., and Raz, E. (2010). A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nat. Cell Biol. 12, 47-53. Kelleher, R.J., 3rd, Govindarajan, A., Jung, H.Y., Kang, H., and Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467-479. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of Embryonic-Development of the Zebrafish. Dev. Dyn. 203, 253-310. Kleiber, C., and Zeileis, A. (2016). Visualizing Count Data Regressions Using Rootograms. Am. Stat. 70, 296-303. Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., and Nusslein-Volhard, C. (2000). Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875-888. Knaut, H., Werz, C., Geisler, R., Nusslein-Volhard, C., and Consortium, T.S. (2003). A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421, 279-282. Koprunner, M., Thisse, C., Thisse, B., and Raz, E. (2001). A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877-2885. Kosaka, K., Kawakami, K., Sakamoto, H., and Inoue, K. (2007). Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech. Dev. 124, 279-289. Kouhara, H., Hadari, Y.R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I., and Schlessinger, J. (1997). A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89, 693-702. Kuo, W.J., Digman, M.A., and Lander, A.D. (2010). Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol. Biol. Cell 21, 4028-4041. Lau, E.K., Paavola, C.D., Johnson, Z., Gaudry, J.P., Geretti, E., Borlat, F., Kungl, A.J., Proudfoot, A.E., and Handel, T.M. (2004). Identification of the glycosaminoglycan binding site of the CC chemokine, MCP-1 - Implications for structure and function in vivo. J. Biol. Chem. 279, 22294-22305. Lavine, K.J., Yu, K., White, A.C., Zhang, X., Smith, C., Partanen, J., and Ornitz, D.M. (2005). Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev. Cell 8, 85-95. Lawson, K.A., Dunn, N.R., Roelen, B.A., Zeinstra, L.M., Davis, A.M., Wright, C.V., Korving, J.P., and Hogan, B.L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424-436. Lee, H.C., Choi, H.J., Lee, H.G., Lim, J.M., Ono, T., and Han, J.Y. (2016). DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens. Stem Cells Dev. 25, 68-79. Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M., and Poss, K.D. (2005). Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173-5183. Leerberg, D.M., R.E., H., and B.W., D. (2018). Fibroblast growth factor receptors function redundantly during zebrafish embryonic development. bioRxiv. Li, X.Y., Yang, Q.F., Yu, H.Y., Wu, L.H., Zhao, Y.H., Zhang, C., Yue, X.T., Liu, Z., Wu, H., Haffty, B.G., et al. (2014). LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget 5, 788-801. Lindner, V., and Reidy, M.A. (1991). Proliferation of Smooth-Muscle Cells after Vascular Injury Is Inhibited by an Antibody against Basic Fibroblast Growth-Factor. Proc. Natl. Acad. Sci. USA 88, 3739-3743. Liu, P., and Zhong, T.P. (2017). MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol. Lett. 39, 1069-1077. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. Makarenkova, H.P., Hoffman, M.P., Beenken, A., Eliseenkova, A.V., Meech, R., Tsau, C., Patel, V.N., Lang, R.A., and Mohammadi, M. (2009). Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal. 2. Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847. Mellgren, E.M., and Johnson, S.L. (2005). kitb, a second zebrafish ortholog of mouse Kit. Dev. Genes Evol. 215, 470-477. Meyen, D., Tarbashevich, K., Banisch, T.U., Wittwer, C., Reichman-Fried, M., Maugis, B., Grimaldi, C., Messerschmidt, E.M., and Raz, E. (2015). Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. Elife 4. Mishima, Y., Giraldez, A.J., Takeda, Y., Fujiwara, T., Sakamoto, H., Schier, A.F., and Inoue, K. (2006). Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135-2142. Mizoguchi, T., Verkade, H., Heath, J.K., Kuroiwa, A., and Kikuchi, Y. (2008). Sdf1/Cxcr4 signaling controls the dorsal migration of endodermal cells during zebrafish gastrulation. Development 135, 2521-2529. Molyneaux, K.A., Zinszner, H., Kunwar, P.S., Schaible, K., Stebler, J., Sunshine, M.J., O'Brien, W., Raz, E., Littman, D., Wylie, C., et al. (2003). The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130, 4279-4286. Nasevicius, A., and Ekker, S.C. (2000). Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-220. Ori, A., Wilkinson, M.C., and Fernig, D.G. (2011). A Systems Biology Approach for the Investigation of the Heparin/Heparan Sulfate Interactome. J. Biol. Chem. 286, 19892-19904. Ori, A., Wilkinson, M.C., and Fernig, D.G. (2011). A Systems Biology Approach for the Investigation of the Heparin/Heparan Sulfate Interactome. J. Biol. Chem. 286, 19892-19904. Ornitz, D.M., and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2. Ornitz, D.M., Xu, J.S., Colvin, J.S., McEwen, D.G., MacArthur, C.A., Coulier, F., Gao, G.X., and Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292-15297. Ota, S., Tonou-Fujimori, N., and Yamasu, K. (2009). The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors. Mech. Dev. 126, 1-17. Paksa, A., Bandemer, J., Hoeckendorf, B., Razin, N., Tarbashevich, K., Minina, S., Meyen, D., Biundo, A., Leidel, S.A., Peyrieras, N., et al. (2016). Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis. Nat. Commun. 7, 11288. Pares, G., and Ricardo, S. (2016). FGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility. J. Cell Sci. 129, 354-366. Parichy, D.M., Rawls, J.F., Pratt, S.J., Whitfield, T.T., and Johnson, S.L. (1999). Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126, 3425-3436. Peter, M., Ameer-Beg, S.M., Hughes, M.K., Keppler, M.D., Prag, S., Marsh, M., Vojnovic, B., and Ng, T. (2005). Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys. J. 88, 1224-1237. Peters, K.G., Marie, J., Wilson, E., Ives, H.E., Escobedo, J., Del Rosario, M., Mirda, D., and Williams, L.T. (1992). Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358, 678-681. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3, 687-694. Petryszak, R., Keays, M., Tang, Y.A., Fonseca, N.A., Barrera, E., Burdett, T., Fullgrabe, A., Fuentes, A.M., Jupp, S., Koskinen, S., et al. (2016). Expression Atlas update--an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 44, D746-752. Pfeiffer, J., Tarbashevich, K., Bandemer, J., Palm, T., and Raz, E. (2018). Rapid progression through the cell cycle ensures efficient migration of primordial germ cells - The role of Hsp90. Dev. Biol. 436, 84-93. Plotnikov, A.N., Hubbard, S.R., Schlessinger, J., and Mohammadi, M. (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101, 413-424. R Core Team (2019). A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing). Raffioni, S., Thomas, D., Foehr, E.D., Thompson, L.M., and Bradshaw, R.A. (1999). Comparison of the intracellular signaling responses by three chimeric fibroblast growth factor receptors in PC12 cells. Proc. Natl. Acad. Sci. USA 96, 7178-7183. Rapraeger, A.C., Krufka, A., and Olwin, B.B. (1991). Requirement of Heparan-Sulfate for Bfgf-Mediated Fibroblast Growth and Myoblast Differentiation. Science 252, 1705-1708. Raz, E. (2003). Primordial germ-cell development: The zebrafish perspective. Nat. Rev. Genet. 4, 690-700. Reichman-Fried, M., Minina, S., and Raz, E. (2004). Autonomous modes of behavior in primordial germ cell migration. Dev. Cell 6, 589-596. Resnick, J.L., Bixler, L.S., Cheng, L., and Donovan, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550-551. Resnick, J.L., Ortiz, M., Keller, J.R., and Donovan, P.J. (1998). Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol. Reprod. 59, 1224-1229. Richardson, B.E., and Lehmann, R. (2010). Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Bio. 11, 37-49. Rohner, N., Bercsenyi, M., Orban, L., Kolanczyk, M.E., Linke, D., Brand, M., Nusslein-Volhard, C., and Harris, M.P. (2009). Duplication of fgfr1 permits Fgf signaling to serve as a target for selection during domestication. Curr. Biol. 19, 1642-1647. Runyan, C., Schaible, K., Molyneaux, K., Wang, Z.Q., Levin, L., and Wylie, C. (2006). Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133, 4861-4869. Samsa, L.A., Fleming, N., Magness, S., Qian, L., and Liu, J. (2016). Isolation and Characterization of Single Cells from Zebrafish Embryos. J. Vis. Exp. Sang, X., Curran, M.S., and Wood, A.W. (2008). Paracrine insulin-like growth factor signaling influences primordial germ cell migration: in vivo evidence from the zebrafish model. Endocrinology 149, 5035-5042. Sarrazin, S., Lamanna, W.C., and Esko, J.D. (2011). Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3. Schlessinger, J., Plotnikov, A.N., Ibrahimi, O.A., Eliseenkova, A.V., Yeh, B.K., Yayon, A., Linhardt, R.J., and Mohammadi, M. (2000). Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 6, 743-750. Schlueter, P.J., Sang, X., Duan, C., and Wood, A.W. (2007). Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev. Biol. 305, 377-387. Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J.A., Fiddes, J.C., and Gospodarowicz, D. (1987). Capillary endothelial-cells express basic fibroblast growth-factor, a mitogen that promotes their own growth. Nature 325, 257-259. Seifert, J.R., and Lehmann, R. (2012). Drosophila primordial germ cell migration requires epithelial remodeling of the endoderm. Development 139, 2101-2106. Sekine, K., Ohuchi, H., Fujiwara, M., Yamasaki, M., Yoshizawa, T., Sato, T., Yagishita, N., Matsui, D., Koga, Y., Itoh, N., et al. (1999). Fgf10 is essential for limb and lung formation. Nat. Genet. 21, 138-141. Seydoux, G., and Strome, S. (1999). Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126, 3275-3283. Shamblott, M.J., Axelman, J., Wang, S., Bugg, E.M., Littlefield, J.W., Donovan, P.J., Blumenthal, P.D., Huggins, G.R., and Gearhart, J.D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13726-13731. Staton, A.A., Knaut, H., and Giraldez, A.J. (2011). miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nat. Genet. 43, 204-211. Staton, A.A., Knaut, H., and Giraldez, A.J. (2013). Reply to: 'On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling'. Nat. Genet. 45, 1266-1267. Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K.A., Richter, U., Cojocaru, V., Tarabykin, V., Wylie, C., Kessel, M., and Raz, E. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev. Biol. 272, 351-361. Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., and Stern, C.D. (2000). Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-78. Strome, S., and Lehmann, R. (2007). Germ versus soma decisions: Lessons from flies and worms. Science 316, 392-393. Strome, S., and Updike, D. (2015). Specifying and protecting germ cell fate. Nat Rev Mol. Cell. Bio. 16, 406-416. Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977-988. Sun, X., Mariani, F.V., and Martin, G.R. (2002). Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501-508. Sutherland, D., Samakovlis, C., and Krasnow, M.A. (1996). Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091-1101. Tada, H., Mochii, M., Orii, H., and Watanabe, K. (2012). Ectopic formation of primordial germ cells by transplantation of the germ plasm: direct evidence for germ cell determinant in Xenopus. Dev. Biol. 371, 86-93. Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003). Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J. Biol. Chem. 278, 43229-43235. Takeuchi, T., Tanigawa, Y., Minamide, R., Ikenishi, K., and Komiya, T. (2010). Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. Mech. Dev. 127, 146-158. Takeuchi, Y., Molyneaux, K., Runyan, C., Schaible, K., and Wylie, C. (2005). The roles of FGF signaling in germ cell migration in the mouse. Development 132, 5399-5409. Tarbashevich, K., Reichman-Fried, M., Grimaldi, C., and Raz, E. (2015). Chemokine-dependent pH elevation at the cell front sustains polarity in directionally migrating zebrafish germ cells. Curr. Biol. 25, 1096-1103. Theusch, E.V., Brown, K.J., and Pelegri, F. (2006). Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev. Biol. 292, 129-141. Thisse, C., and Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69. Thomsen, E.R., Mich, J.K., Yao, Z., Hodge, R.D., Doyle, A.M., Jang, S., Shehata, S.I., Nelson, A.M., Shapovalova, N.V., Levi, B.P., et al. (2016). Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat. Methods 13, 87-93. Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E.K., and Orban, L. (2015). Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports 4, 61-73. Uchimura, K., Morimoto-Tomita, M., Bistrup, A., Li, J., Lyon, M., Gallagher, J., Werb, Z., and Rosen, S.D. (2006). HSulf-2, an extracellular endosulfatase, is secreted by MCF-7 breast carcinoma cells and selectively mobilizes heparin-bound VEGF, FGF-1, and SDF-1. Faseb. J. 20, A1364-A1364. Ueno, H., Gunn, M., Dell, K., Tseng, A., Jr., and Williams, L. (1992). A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J. Biol. Chem. 267, 1470-1476. Urness, L.D., Bleyl, S.B., Wright, T.J., Moon, A.M., and Mansour, S.L. (2011). Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev. Biol. 356, 383-397. van de Lavoir, M.C., Diamond, J.H., Leighton, P.A., Mather-Love, C., Heyer, B.S., Bradshaw, R., Kerchner, A., Hooi, L.T., Gessaro, T.M., Swanberg, S.E., et al. (2006). Germline transmission of genetically modified primordial germ cells. Nature 441, 766-769. Vanhauwaert, S., Van Peer, G., Rihani, A., Janssens, E., Rondou, P., Lefever, S., De Paepe, A., Coucke, P.J., Speleman, F., Vandesompele, J., et al. (2014). Expressed repeat elements improve RT-qPCR normalization across a wide range of zebrafish gene expression studies. PLoS One 9, e109091. Walicke, P., Cowan, W.M., Ueno, N., Baird, A., and Guillemin, R. (1986). Fibroblast Growth-Factor Promotes Survival of Dissociated Hippocampal-Neurons and Enhances Neurite Extension. Proc. Natl. Acad. Sci. USA 83, 3012-3016. Wang, F., Kan, M., Yan, G., Xu, J., and McKeehan, W.L. (1995). Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J. Biol. Chem. 270, 10231-10235. Wang, M., Zhang, C., Huang, C., Cheng, S., He, N., Wang, Y., Ahmed, M.F., Zhao, R., Jin, J., Zuo, Q., et al. (2018). Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells. J. Cell. Biochem. 119, 2396-2407. Wei, K.H., and Liu, I.H. (2014). Heparan sulfate glycosaminoglycans modulate migration and survival in zebrafish primordial germ cells. Theriogenology 81, 1275-1285. Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., and Raz, E. (2003). dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 13, 1429-1434. Weidinger, G., Wolke, U., Koprunner, M., Klinger, M., and Raz, E. (1999). Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126, 5295-5307. Weinstein, M., Xu, X., Ohyama, K., and Deng, C.X. (1998). FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125, 3615-3623. Westerfield, M. (2007). The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4 edn (University of Oregon Press, Eugene). Whyte, J., Glover, J.D., Woodcock, M., Brzeszczynska, J., Taylor, L., Sherman, A., Kaiser, P., and McGrew, M.J. (2015). FGF, Insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 5, 1171-1182. Williams, A.F., and Barclay, A.N. (1988). The immunoglobulin superfamily--domains for cell surface recognition. Annu. Rev. Immunol. 6, 381-405. Williamson, A., and Lehmann, R. (1996). Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12, 365-391. Wolke, U., Weidinger, G., Koprunner, M., and Raz, E. (2002). Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr. Biol. 12, 289-294. Wong, T.T., and Collodi, P. (2013). Effects of specific and prolonged expression of zebrafish growth factor | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76516 | - |
dc.description.abstract | 始基生殖細胞(primordial germ cell, PGC)是配子的前驅細胞。由於 PGC 與體細胞分歧於發育早期,因此需要橫越胚胎遷移至未來性腺形成的位置。在脊索動物中,體細胞分泌的趨化因子 Cxcl12 能夠激發 PGC 細胞膜上的受器 Cxcr4,引導 PGC 沿著趨化因子的濃度梯度移動。
利用斑馬魚為動物模式,我發現另一種訊息傳遞途徑——纖維母細胞生長因子 (fibroblast growth fator, Fgf)訊息傳遞也參與在 PGC 的遷移。首先,為了瞭解 PGC 是否能夠感知 Fgf 訊息,我將 PGC 專一表現綠螢光蛋白之轉基因魚 Tg(kop:egfp-F-nanos3-3'UTR) 的 PGC 分選出來,進行 RNA 表現量分析。我們發現斑馬魚 PGC 表現了 Fgf 受器(fgfr1a, fgfr1b, fgfr2, and fgfr4),其中 fgfr4 表現量最高,暗示斑馬魚 PGC 可以偵測 Fgf 訊息。 接著,為了檢驗 PGC 對於 Fgf 訊息的需求,我們利用了顯性失活形式(dominant negative form)的 Fgf 受器 dn-Fgfr3 來競爭內源性 Fgf 訊息傳遞,為了專一在 PGC 中過量表現 dn-Fgfr3,在其序列中連接了 nanos3 基因的 3 端非轉譯區(3'-UTR),並在斑馬魚胚發育一細胞時期顯微注射入細胞中。在對照組中,PGC 在受精後六小時分佈在胚盤的邊緣,並在受精後一日齡時抵達生殖脊;當 Fgf 訊息傳遞受干擾時,有些 PGC 在受精後六小時脫離了胚盤邊緣,往動物極(animal pole)移動,並在受精後一日齡時散落在胚的各處,表示 PGC 仰賴接受 Fgf 訊息完成定向遷移。此失能表現型可以透過同時讓 PGC 表現持續激活形式(constitutively active form)的 Fgf 受器 ca-Fgfr4 拯救之,表示 dn-Fgfr3 導致的 PGC 分佈異常為專一性抑制 Fgf 訊息傳遞的結果。 總結來說,我們發現斑馬魚 PGC 可能具有接收 Fgf 訊息的能力,而 Fgf 訊息參與在 PGC 的遷移中。據我們所知,這是第一個脊索動物 PGC 與 Fgf 訊息在體內直接互動的證據。 | zh_TW |
dc.description.abstract | Gametes are derived from primordial germ cells (PGCs). As one of the first cell lineages specified, PGCs migrate across the embryo toward where the gonad forms during development. In vertebrates, somatic cell-secreted chemokine Cxcl12 is known to guide PGCs up the chemokine gradient.
Using zebrafish as the animal model, I report here that fibroblast growth factor (Fgf) signaling is participated in PGC migration. To determine the competence of PGCs to respond to Fgf signals, I isolated PGCs from Tg(kop:egfp-F-nanos3-3'UTR) embryos to measure the gene expressions of Fgf receptors. I identified all five Fgf receptors (fgfr1a, fgfr1b, and fgfr2-4) expressed in zebrafish PGCs while the fgfr4 transcript is the most abundant. It suggests PGCs may be able to perceive Fgf signals. Next, to assess the necessity of Fgf signaling by PGCs themselves, I performed loss-of-function experiments by introducing mRNA encoding a dominant negative form of Fgf receptor 3 (dn-Fgfr3) with the 3'-UTR of nanos3, which inhibits its mRNA translation in the soma. In the control embryos, representative PGCs were aligned at the blastoderm margin during early gastrulation (6 hours post-fertilization, hpf) and accumulated at the gonadal ridge at the end of somitogenesis (24 hpf). In those embryos in which the Fgf signaling in PGCs was repressed, however, some of PGCs were centralized toward the animal pole at 6 hpf and mislocalized throughout the embryo at 24 hpf. The loss-of-function phenotypes could be rescued by co-expression of constitutively-active Fgfr4 (ca-Fgfr4), suggesting the specific effects of dn-Fgfr3. Taken together, Fgf signals are required for directional migration of PGCs in zebrafish. My study illustrates the direct participation of Fgf signaling in PGC migration in vivo. To my knowledge, it is the first in vivo evidence to show that Fgf signaling plays a direct role in the migration of vertebrate PGCs. | en |
dc.description.provenance | Made available in DSpace on 2021-07-09T15:53:36Z (GMT). No. of bitstreams: 1 ntu-108-R06626005-1.pdf: 30160517 bytes, checksum: 4e5c80e385b622b0cb9cb91d9aac670d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Contents vi List of tables vii List of figures viii 1. Introduction 1 1.1 Primordial germ cells (PGCs) 1 1.2 Fibroblast growth factor (FGF) signaling 11 2.Specific aims 15 3. Material and methods 16 3.1 Zebrafish 16 3.2 Identification of transcripts between cell types 17 3.3 Introduction of extrinsic mRNA into embryos 21 3.4 Quantification of gene expressions in zebrafish embryos 23 3.5 Visualization of RNA spatial distribution within zebrafish embryos 25 3.6 Evaluation of cytosolic signaling activation in PGCs 27 3.7 Statistics 28 4. Results 40 4.1 Fgf receptors are expressed in migrating PGCs 40 4.2 Manipulation of Fgf signaling in zebrafish PGCs 43 4.3 Fgf signaling is required for PGC migration 45 4.4 Manipulation of Fgf signaling did not cause detectable changes in Mapk or Rac1 signaling 48 5. Discussion 73 5.1 Competence of PGCs to receive Fgf signals 73 5.2 FGF signaling and PGC maintenance 76 5.3 FGF signaling and PGC migration 80 5.4 Intracellular signaling in PGCs evoked by Fgfs 84 6. Conclusion 86 7. References 87 8. Q&A 103 | |
dc.language.iso | en | |
dc.title | 纖維母細胞生長因子訊息對於斑馬魚始基生殖細胞遷移時期的重要性 | zh_TW |
dc.title | Intrinsic Fgf signaling is required for primordial germ cell migration in zebrafish | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李士傑,江運金,皇甫維君,管永恕 | |
dc.subject.keyword | 始基生殖細胞,纖維母細胞生長因子,斑馬魚,細胞遷移, | zh_TW |
dc.subject.keyword | Primordial germ cell,fibroblast growth factor,zebrafish,cell migration, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201903081 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-12 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
dc.date.embargo-lift | 2022-08-26 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06626005-1.pdf | 29.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。