請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲(Ming-Syan Chen) | |
| dc.contributor.author | Ming-Hao Wen | en |
| dc.contributor.author | 温明浩 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:52:58Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Frequentitemset mining dataset repository.http://fimi.uantwerpen.be/data/.Accessed: 2020-06-01. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets ofitems in large databases.SIGMOD Rec., 22(2):207–216, June 1993. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in largedatabases. InProceedings of the 20th International Conference on Very Large DataBases, VLDB’94, page 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. D. Bhalodiya. Ibm quest market basket synthetic data generator, 05 2014. S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data.ACM SIGMOD Record, 26, 12 2001. C.-K. Chiou and J. Tseng. An incremental mining algorithm for association rulesbased on minimal perfect hashing and pruning. volume 7234, pages 106–113, 042012. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledgediscovery in databases.AI Magazine, 17(3):37, Mar. 1996.29 P. Gera and S. Jyothi. Tree-based incremental association rule mining without candidate itemset generation. 12 2010. G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-trees.IEEE Trans. on Knowl. and Data Eng., 17(10):1347–1362, Oct. 2005. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.SIGMOD Rec., 29(2):1–12, May 2000. J. Henry S. Warren. The quest for an accelerated population count. InBeautifulCode: Leading Programmers Explain How They Think, chapter 10, pages 147–158.O’Reilly Media, 2007. Jun-Lin Lin and M. H. Dunham. Mining association rules: anti-skew algorithms. InProceedings 14th International Conference on Data Engineering, pages 486–493,1998. Z. Ma, J. Yang, T. Zhang, and F. Liu. An improved eclat algorithm for mining association rules based on increased search strategy.International Journal of DatabaseTheory and Application, 9:251–266, 05 2016. W. Muła, N. Kurz, and D. Lemire. Faster population counts using avx2 instructions.Computer Journal, 61, 11 2016. J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for miningassociation rules.SIGMOD Rec., 24(2):175–186, May 1995. B. Rácz. nonordfp: An fp-growth variation without rebuilding the fp-tree. InFIMI,2004.30 V. Vaithiyanathan, K. Rajeswari, R. Phalnikar, and S. Tonge. Improved apriori algorithm based on selection criterion. In2012 IEEE International Conference onComputational Intelligence and Computing Research, pages 1–4, 2012. Z. Xiong, P. Chen, and Y. Zhang. Improvement of eclat algorithm for associationrules based on hash boolean matrix.Application Research of Computers, 27(4):1323–1325, Apr 2010. M. J. Zaki. Scalable algorithms for association mining.IEEE Trans. on Knowl. andData Eng., 12(3):372–390, May 2000. M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. InProceedings of theNinth ACM SIGKDD International Conference on Knowledge Discovery and DataMining, KDD’03, page 326–335, New York, NY, USA, 2003. Association forComputing Machinery. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76479 | - |
| dc.description.abstract | 頻繁項目集探勘是一資料探勘的分支,是一基礎且重要的技術,其目的在於找出物品之間的關聯性。頻繁項目集探勘的發展歷史悠久,直至今日依然有不少關於此技術的論文發表,試圖加速或優化其探勘的過程。根據資料的緊湊程度,可以分成密集、中等及稀疏,每種都有著不同的性質,而大多數的演算法都只對於特定的性質進行算法上的加速。然而,隨著數位化的普及,各式資料皆以數位的形式儲存,使得資料量迅速成長,許多演算法的短處也在資料量的成長下逐漸顯露出來。為了使演算法更具通用性,本篇論文提出基於分群策略之頻繁項目集探勘演算法加速(Eclat Grouping),在二元陣列的表示法下,試圖利用分群的方式降低資料維度以加速頻繁項目集探勘的過程。Eclat Grouping利用二元陣列稀疏的特性,將資料分群合併,藉此減少空值的情形與降低運算量,同時利用二階段驗證來確保結果的正確性。此外,我們也藉由中央處理器的特定指令對陣列做平行化處理,進一步加速運算流程。實驗結果顯示Eclat Grouping在稀疏資料集下優越於以往的演算法,同時在密集資料集下保持著近似的運算速度。 | zh_TW |
| dc.description.abstract | Frequent itemset mining (F.I.M) is a branch of data mining. It is a fundamental andimportant technique, which aims to find out the relation between items. The concept ofF.I.M was proposed many years ago and there are still have many works that try to optimize and accelerate the mining process. According to the density of the database, it canbe divided into three types, including dense, mid-dense, and sparse database. Each typeof database has its characteristics and most of the algorithms are only specific to one typeof density. Due to the popularization of digitization, the size of databases grows rapidly.However, the growing data also enlarges the shortcomings in most algorithms. To makethe algorithm more general in different density of databases, we proposed an efficientfrequent itemset mining algorithm based on the grouping strategy calledEclat Grouping.We use the grouping method to reduce the data dimension based on binary array representation and accelerate the process of F.I.M. Moreover, we use two-stage accelerationto filter non-frequent itemsets in the first stage and ensure the correctness of the result in the second stage. In addition, we use certain instructions to parallelize and accelerate thecomputing process. The experiment shows that Eclat Grouping is faster than others insparse databases with negligible change for the running time in dense databases. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:58Z (GMT). No. of bitstreams: 1 U0001-2007202022023700.pdf: 1104044 bytes, checksum: d4d54688178de67f7ece5204bd854116 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix 1 Introduction 1 2 Related Work 3 3 Preliminaries 5 3.1 Problem statement 5 3.2 Eclat algorithm 6 3.3 Existing improvements on Eclat algorithm 8 4 Algorithm 11 4.1 Vertical bitset representation 12 4.2 Transaction grouping 13 4.3 Two-stage Acceleration 14 4.4 Support counting acceleration 15 5 Experiment and Analysis 16 5.1 Performance Analysis 16 5.2 Grouping factor analysis 18 6 Conclusion 28 References 29 | |
| dc.language.iso | en | |
| dc.subject | AVX | zh_TW |
| dc.subject | Eclat | zh_TW |
| dc.subject | 關聯規則 | zh_TW |
| dc.subject | 頻繁項目集挖掘 | zh_TW |
| dc.subject | 垂直挖掘 | zh_TW |
| dc.subject | AVX | en |
| dc.subject | Frequent itemset mining | en |
| dc.subject | association rule | en |
| dc.subject | vertical mining | en |
| dc.subject | Eclat | en |
| dc.title | Eclat Grouping:基於分群策略之頻繁項目集探勘演算法加速 | zh_TW |
| dc.title | Eclat Grouping: An Efficient Frequent Itemset MiningAlgorithm Based on Grouping Strategy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊得年(De-Nian Yang),葉彌妍(Mi-Yen Yeh),帥宏翰(Hong-Han Shuai),王釧茹(Chuan-Ju Wang) | |
| dc.subject.keyword | 頻繁項目集挖掘,關聯規則,垂直挖掘,Eclat,AVX, | zh_TW |
| dc.subject.keyword | Frequent itemset mining,association rule,vertical mining,Eclat,AVX, | en |
| dc.relation.page | 31 | |
| dc.identifier.doi | 10.6342/NTU202001665 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202022023700.pdf | 1.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
