Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雯(Wen Chang)
dc.contributor.authorGuan-Ci Hongen
dc.contributor.author洪冠琦zh_TW
dc.date.accessioned2021-07-09T15:52:52Z-
dc.date.available2025-08-01
dc.date.copyright2020-08-11
dc.date.issued2020
dc.date.submitted2020-08-02
dc.identifier.citationHarrison SC. 2005. Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res 64:231-61.
Harrison SC. 2008. Viral membrane fusion. Nat Struct Mol Biol 15:690-8.
Kielian M, Rey FA. 2006. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4:67-76.
Kielian M. 2006. Class II virus membrane fusion proteins. Virology 344:38-47.
Backovic M, Jardetzky TS. 2011. Class III viral membrane fusion proteins. Adv Exp Med Biol 714:91-101.
Harrison JS, Higgins CD, O'Meara MJ, Koellhoffer JF, Kuhlman BA, Lai JR. 2013. Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure 21:1085-96.
Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31-124.
Weisberg AS, Maruri-Avidal L, Bisht H, Hansen BT, Schwartz CL, Fischer ER, Meng X, Xiang Y, Moss B. 2017. Enigmatic origin of the poxvirus membrane from the endoplasmic reticulum shown by 3D imaging of vaccinia virus assembly mutants. Proc Natl Acad Sci U S A 114:E11001-e11009.
Lin CL, Chung CS, Heine HG, Chang W. 2000. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J Virol 74:3353-65.
Hsiao JC, Chung CS, Chang W. 1999. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73:8750-61.
Chung CS, Hsiao JC, Chang YS, Chang W. 1998. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J Virol 72:1577-85.
Chiu WL, Lin CL, Yang MH, Tzou DL, Chang W. 2007. Vaccinia virus 4c (A26L) protein on intracellular mature virus binds to the extracellular cellular matrix laminin. J Virol 81:2149-57.
Ojeda S, Domi A, Moss B. 2006. Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. J Virol 80:9822-30.
Ojeda S, Senkevich TG, Moss B. 2006. Entry of vaccinia virus and cell-cell fusion require a highly conserved cysteine-rich membrane protein encoded by the A16L gene. J Virol 80:51-61.
Senkevich TG, Ward BM, Moss B. 2004. Vaccinia virus A28L gene encodes an essential protein component of the virion membrane with intramolecular disulfide bonds formed by the viral cytoplasmic redox pathway. J Virol 78:2348-56.
Brown E, Senkevich TG, Moss B. 2006. Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 80:9455-64.
Bisht H, Weisberg AS, Moss B. 2008. Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol 82:8687-94.
Townsley AC, Senkevich TG, Moss B. 2005. The product of the vaccinia virus L5R gene is a fourth membrane protein encoded by all poxviruses that is required for cell entry and cell-cell fusion. J Virol 79:10988-98.
Senkevich TG, Moss B. 2005. Vaccinia virus H2 protein is an essential component of a complex involved in virus entry and cell-cell fusion. J Virol 79:4744-54.
Izmailyan RA, Huang CY, Mohammad S, Isaacs SN, Chang W. 2006. The envelope G3L protein is essential for entry of vaccinia virus into host cells. J Virol 80:8402-10.
Senkevich TG, Ojeda S, Townsley A, Nelson GE, Moss B. 2005. Poxvirus multiprotein entry-fusion complex. Proc Natl Acad Sci U S A 102:18572-7.
Satheshkumar PS, Moss B. 2009. Characterization of a newly identified 35-amino-acid component of the vaccinia virus entry/fusion complex conserved in all chordopoxviruses. J Virol 83:12822-32.
Townsley AC, Senkevich TG, Moss B. 2005. Vaccinia virus A21 virion membrane protein is required for cell entry and fusion. J Virol 79:9458-69.
Laliberte JP, Weisberg AS, Moss B. 2011. The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog 7:e1002446.
Moss B. 2012. Poxvirus cell entry: how many proteins does it take? Viruses 4:688-707.
Townsley AC, Weisberg AS, Wagenaar TR, Moss B. 2006. Vaccinia virus entry into cells via a low-pH-dependent endosomal pathway. J Virol 80:8899-908.
Smith GL, Vanderplasschen A, Law M. 2002. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915-2931.
Law M, Carter GC, Roberts KL, Hollinshead M, Smith GL. 2006. Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103:5989-94.
Schmidt FI, Bleck CK, Helenius A, Mercer J. 2011. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. Embo j 30:3647-61.
Moss B. 2016. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 60:89-96.
Gray RDM, Albrecht D, Beerli C, Huttunen M, Cohen GH, White IJ, Burden JJ, Henriques R, Mercer J. 2019. Nanoscale polarization of the entry fusion complex of vaccinia virus drives efficient fusion. Nature Microbiology 4:1636-1644.
Chang SJ, Chang YX, Izmailyan R, Tang YL, Chang W. 2010. Vaccinia virus A25 and A26 proteins are fusion suppressors for mature virions and determine strain-specific virus entry pathways into HeLa, CHO-K1, and L cells. J Virol 84:8422-32.
Ichihashi Y, Dales S. 1971. Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology 46:533-43.
Sanderson CM, Frischknecht F, Way M, Hollinshead M, Smith GL. 1998. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. J Gen Virol 79 ( Pt 6):1415-25.
Chang SJ, Shih AC, Tang YL, Chang W. 2012. Vaccinia mature virus fusion regulator A26 protein binds to A16 and G9 proteins of the viral entry fusion complex and dissociates from mature virions at low pH. J Virol 86:3809-18.
Chang HW, Yang CH, Luo YC, Su BG, Cheng HY, Tung SY, Carillo KJD, Liao YT, Tzou DM, Wang HC, Chang W. 2019. Vaccinia viral A26 protein is a fusion suppressor of mature virus and triggers membrane fusion through conformational change at low pH. PLoS Pathog 15:e1007826.
Blackman KE, Bubel HC. 1972. Origin of the vaccinia virus hemagglutinin. J Virol 9:290-6.
Law KM, Smith GL. 1992. A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J Gen Virol 73 ( Pt 3):549-57.
Turner PC, Moyer RW. 1992. An orthopoxvirus serpinlike gene controls the ability of infected cells to fuse. J Virol 66:2076-85.
Turner PC, Moyer RW. 2006. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. Virology 347:88-99.
Turner PC, Moyer RW. 2008. The vaccinia virus fusion inhibitor proteins SPI-3 (K2) and HA (A56) expressed by infected cells reduce the entry of superinfecting virus. Virology 380:226-33.
Zhou J, Sun XY, Fernando GJ, Frazer IH. 1992. The vaccinia virus K2L gene encodes a serine protease inhibitor which inhibits cell-cell fusion. Virology 189:678-86.
Wagenaar TR, Moss B. 2009. Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion. J Virol 83:1546-54.
Seki M, Oie M, Ichihashi Y, Shida H. 1990. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 175:372-84.
Wagenaar TR, Moss B. 2007. Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J Virol 81:6286-93.
Wagenaar TR, Ojeda S, Moss B. 2008. Vaccinia virus A56/K2 fusion regulatory protein interacts with the A16 and G9 subunits of the entry fusion complex. J Virol 82:5153-60.
Kasani SK, Cheng HY, Yeh KH, Chang SJ, Hsu PW, Tung SY, Liang CT, Chang W. 2017. Differential Innate Immune Signaling in Macrophages by Wild-Type Vaccinia Mature Virus and a Mutant Virus with a Deletion of the A26 Protein. J Virol 91.
Chung CS, Huang CY, Chang W. 2005. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J Virol 79:1623-34.
Oie M, Shida H, Ichihashi Y. 1990. The function of the vaccinia hemagglutinin in the proteolytic activation of infectivity. Virology 176:494-504.
Brum LM, Turner PC, Devick H, Baquero MT, Moyer RW. 2003. Plasma membrane localization and fusion inhibitory activity of the cowpox virus serpin SPI-3 require a functional signal sequence and the virus encoded hemagglutinin. Virology 306:289-302.
Dower K, Rubins KH, Hensley LE, Connor JH. 2011. Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 91:72-80.
Rozelle DK, Filone CM, Dower K, Connor JH. 2014. Vaccinia reporter viruses for quantifying viral function at all stages of gene expression. J Vis Exp doi:10.3791/51522.
Brister JR A-AD, Bao Y, Blinkova O. . 2015. NCBI viral genomes resource. Nucleic Acids Res 43.
Shigehiro Kuraku CMZ, Osamu Nishimura, Kazutaka Katoh. 2013. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity Nucleic Acids Research 41:W22–W28.
Katoh K, Rozewicki J, Yamada KD. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform doi:10.1093/bib/bbx108.
Ulaeto D, Grosenbach D, Hruby DE. 1996. The vaccinia virus 4c and A-type inclusion proteins are specific markers for the intracellular mature virus particle. J Virol 70:3372-7.
Senkevich TG, Ward BM, Moss B. 2004. Vaccinia Virus Entry into Cells Is Dependent on a Virion Surface Protein Encoded by the A28L Gene. J Virol 78:2357-66.
Wagenaar TR, Moss B. 2007. Association of Vaccinia Virus Fusion Regulatory Proteins with the Multicomponent Entry/Fusion Complex. J Virol.
Su HP, Garman SC, Allison TJ, Fogg C, Moss B, Garboczi DN. 2005. The 1.51-A structure of the poxvirus L1 protein, a target of potent neutralizing antibodies. Proc Natl Acad Sci U S A 102:4240-5.
Diesterbeck US, Gittis AG, Garboczi DN, Moss B. 2018. The 2.1 A structure of protein F9 and its comparison to L1, two components of the conserved poxvirus entry-fusion complex. Sci Rep 8:16807.
Shida H, Dales S. 1981. Biogenesis of vaccinia: carbohydrate of the hemagglutinin molecules. Virology 111:56-72.
Shida H, Dales S. 1982. Biogenesis of vaccinia: molecular basis for the hemagglutination-negative phenotype of the IHD-W strain. Virology 117:219-37.
Shida H, Matsumoto S. 1983. Analysis of the hemagglutinin glycoprotein from mutants of vaccinia virus that accumulates on the nuclear envelope. Cell 33:423-34.

dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76473-
dc.description.abstract在牛痘病毒進入宿主過程中,牛痘病毒需要通過11種蛋白質的病毒融合複合物與宿主膜融合,但詳細機制仍不清楚。先前研究顯示,病毒蛋白A56和K2會在感染的細胞上表達,並透過與病毒融合複合物的兩個分子(G9和A16)結合以防止細胞外痘苗病毒的過度感染,從而抑制膜融合。為了研究A56 / K2複合物如何抑制膜融合,我們透過在HeLa 細胞表面表達A56和K2蛋白並用三種痘苗病毒WR,WRΔA26和WRΔB5進行病毒體外演化實驗,以分離出適應性突變病毒。適應性突變病毒的全基因組定序結果顯示,三種病毒基因對於痘苗病毒克服A56 / K2表達的融合抑制作用很重要。我們確定的有一個三種病毒都共同擁有的突變發生在G9R ORF中,它在經過多代的篩選後出現了一個單一鹼基突變C130T,會導致胺基酸His44變成Tyr。G9H44Y突變並不影響病毒融合蛋白複合物的形成,也不影響其與A56 / K2蛋白複合物的相互作用。這些結果說明G9H44Y突變蛋白模擬了酸誘導的中間構象,使膜融合更容易發生。由於此突變共同出現在三個傳代病毒庫中,可能表明該突變是發生病毒適應的主要驅動力。除了G9H44Y突變之外,有兩個突變只專一性的存在於WR傳代病毒中,A28 ORF中的P79Q和A26 ORF中發生的多個插入或缺失的適應性突變。A28P79Q突變僅短暫累積,隨後在之後的傳代過程中被A26 ORF中發生的多個插入或缺失突變所取代,這也說明了這些基因之間存在著遺傳上相互作用的關係。 實際上,我們發現A26和A28蛋白在免疫共沈澱實驗結果中顯現有相互結合的關係,然而A28P79Q突變並不影響其與A26蛋白的結合。最後,我們發現雙重突變病毒WR-G9H44Y+A28P79Q具有比WR-G9H44Y好的病毒傳播能力,這結果可能暗示著A28P79Q控制著mature virus (MV)到extracellular virus (EV)的運輸或EV釋放的步驟。zh_TW
dc.description.abstractFor cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, I performed experimental evolutionary analyses by repeatedly passaging three vaccinia viruses—WR, WRΔA26 and WRΔB5—in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that three viral genes are important for vaccinia virus to overcome fusion inhibition by A56/K2 expression. The first viral open reading frame (ORF) I identified is G9R, which harbors a specific mutation (C130T) from adaptive selection, resulting in a His44Tyr amino acid change. G9H44Y did not affect viral fusion protein complex formation nor its interaction with A56/K2 protein complex. These results suggest that G9H44Y mutant protein mimics an acid-induced intermediate conformation more prone to membrane fusion. Since this mutation is shared by all three passaged virus pools, this mutation appears to be the major driving force for virus adaptation. In addition to G9H44Y, I also identified two viral mutations specific to adaptive mutants derived from WR passaging, i.e., P79Q of A28 ORF and multiple insertions/deletions of A26 ORF. A28P79Q only accumulated transiently and was subsequently replaced by insertions/deletions of A26 ORF in subsequent passaging events, indicating genetic interplay between these two genes. Indeed, a co-immunoprecipitation experiment revealed that A26 and A28 protein bind to each other and that the P79Q mutation of A28 does not affect its binding to A26 protein. Finally, I observed that the double mutant virus WR-G9H44Y+A28P79Q exhibits enhanced virus spreading relative to WR-G9H44Y, indicating that A28P79Q controls the transition of mature virus (MV) to extracellular virus (EV) or the EV release step.en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:52:52Z (GMT). No. of bitstreams: 1
U0001-3107202019214500.pdf: 6501794 bytes, checksum: a2224887e01e956492a95b8af198aaba (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
摘要 II
Abstract III
Table of Contents V
The List of Figures and Supplementary Figures VI
Introduction 1
Materials and Methods 4
Cell culture, reagents and viruses. 4
Construction of a fluorescent recombinant vaccinia virus expressing early Venus and late A4-mCherry protein (WRA26-Venus-A4mCherry). 5
Construction of a stable cell line expressing A56 and K2 protein complex. 5
Construction of a fluorescent recombinant vaccinia virus expressing late A4-mCherry protein, WRB5-A4-mCherry. 6
Experimental passaging of WRΔA26, WR and WRΔB5 viruses on HeLa and HeLa-A56/K2 cells for adaptive mutant virus selection. 6
Viral genome sequencing and data analyses. 6
Generation of G9H44Y recombinant virus of WRΔA26, WR and WRΔB5 vaccinia viruses. 8
Growth analyses of the viruses in HeLa and HeLa-A56/K2 cells. 8
Vaccinia MV-triggered cell fusion from-without at neutral and acidic pH. 9
Vaccinia EV-triggered cell fusion from-within. 9
Coimmunoprecipitation and immunoblot analyses. 10
Results 12
Chapter 1: To investigate EV-mediated entry fusion inhibition process in WRA26 through in vitro experimental evolution. 12
Chapter 2: WR-G9H44Y mutants require additional mutations in A28 and A26 genes in order to overcome growth inhibition on HeLa-A56/K2 cells. 19
Discussion 27
References 30
dc.language.isoen
dc.subject膜融合抑制子zh_TW
dc.subject病毒體外演化實驗zh_TW
dc.subject牛痘病毒膜融合機制zh_TW
dc.subject膜融合蛋白複合物(EFC)zh_TW
dc.subjectEntry fusion complex (EFC)en
dc.subjectFusion suppressoren
dc.subjectVaccinia virus entryen
dc.subjectExperimental evolutionen
dc.title透過適應性演化研究牛痘病毒A56/K2 蛋白複合體如何抑制病毒進入細胞zh_TW
dc.titleAdaptive evolution of vaccinia virus to bypass viral entry inhibition of A56/K2 protein complexen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭貽生(Yi-Sheng Cheng),薛雁冰(Yen-Ping Hsueh), 呂俊毅(Jun-Yi Leu)
dc.subject.keyword牛痘病毒膜融合機制,膜融合蛋白複合物(EFC),膜融合抑制子,病毒體外演化實驗,zh_TW
dc.subject.keywordVaccinia virus entry,Entry fusion complex (EFC),Fusion suppressor,Experimental evolution,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202002182
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
dc.date.embargo-lift2025-08-01-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
U0001-3107202019214500.pdf6.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved