請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76465完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(Wing-Kit Choi) | |
| dc.contributor.author | Yi-Cheng Hsieh | en |
| dc.contributor.author | 謝易呈 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:52:45Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | [1] Friedrich Reinitzer, Beiträge zur kenntniss des cholesterins, Monatshefte für Chemie/Chemical Monthly 9.1, pp.421-441, (1888) [2] Otto Lehmann, Über fliessende krystalle, Zeitschrift für physikalische Chemie 4.1, pp.462-472, (1889) [3] Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley Sons, Inc., pp.78-82, (2011) [4] Eugene Hecht, Optics (4th edition), pp.336-337, Pearson Education, Inc., (2002) [5] I. Abdulhalim, Dispersion Relations for the Refractive Indices and the Effective Birefringence of Liquid Crystals, Molecular Crystals and Liquid Crystals, 197:1, pp.103-108, (1991) [6] Shin-Tson Wu, Birefringence dispersions of liquid crystals, Physical Review A 33.2 : 1270, (1986) [7] Eugene Hecht, Optics, pp.371, Pearson Education, Inc., (2002) [8] M.S.Zakerhamidia, M.H. MajlesArab, A.Maleki, Dielectric anisotropy, refractive indices and order parameter of W-1680 nematic liquid crystal, Journal of Molecular Liquids, Volume 181 , pp.77-81, May (2013) [9] A. Sengupta, Topological Microfluidics, pp.14, Springer Theses, (2013) [10] Xiangyi Nie, Haiqing Xianyu, Ruibo Lu, Thomas X. Wu, and Shin-Tson Wu, Pretilt Angle Effects on Liquid Crystal Response Time, J. Display Technol. 3, pp.280-283, (2007) [11] Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley Sons, Inc., pp..413, (2011) [12] Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley Sons, Inc., pp.369-372, (2011) [13] Shoichi Ishihara, How Far Has the Molecular Alignment of Liquid Crystals Been Elucidated ?, J. Display Technol. 1, pp.30, (2005) [14] Zhibing Ge, Xinyu Zhu, Thomas X. Wu, Shin-Tson Wu, High Transmittance In-Plane Switching Liquid Crystal Displays, J. Display Technol. 2, pp.114-120, (2006) [15] Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley Sons, Inc., pp.376-378, (2011) [16] Robert H. Chen, Liquid Crystal Displays: Fundamental Physics and Technology, John Wiley Sons, Inc., pp.380-383, (2011) [17] W. Helfrich, and M. Schadt, Voltage-dependent optical activity of a twisted nematic liquid crystal, Crystals That Flow: Classic Papers from the History of Liquid Crystals, CRC Press, pp.537-541 (2004) [18] Vladimir G Chigrinov, Liquid crystal devices: physics and applications, (1999) [19] M. Oh‐e and K. Kondo, Electro‐optical characteristics and switching behavior of the in‐plane switching mode, Applied physics letters, vol. 67, pp.3895-3897, (1995) [20] M. Oh‐e and K. Kondo, Response mechanism of nematic liquid crystals using the in‐plane switching mode, Applied physics letters, vol. 69, pp.623-625, (1996) [21] S. Lee, S. Lee, and H. Kim, Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching, Applied physics letters, vol. 73, pp.2881-2883, (1998) [22] S. H. Hong, I. C. Park, H. Y. Kim, and S. H. Lee, Electro-optic characteristic of fringe-field switching mode depending on rubbing direction, Japanese Journal of Applied Physics, vol. 39, p.L527, (2000) [23] C.-L. Ting and W.F. Huang, Multi-domain vertical alignment liquid crystal display and driving method thereof, ed: Google Patents, (2005) [24] Kyeong-Hyeon Kim, et al., Domain divided vertical alignment mode with optimized fringe field effect, Proceedings of Asia Display, Vol. 98, (1998) [25] S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, et al., Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen, Applied physics letters, vol. 90, p.261910, (2007) [26] Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag, C.-J. Yu, and J.-H. Kim, Surface-controlled patterned vertical alignment mode with reactive mesogen, Optics express, vol. 17, pp.10298-10303, (2009) [27] P. J. Bos and K. R. Koehler/beran, The pi-cell: a fast liquid-crystal optical-switching device, Molecular Crystals and Liquid Crystals, vol. 113, pp.329-339, (1984) [28] T. Miyashita, P. J. Vetter, Y. Yamaguchi, and T. Uchida, Wide‐viewing‐angle display mode for active‐matrix LCDs using a bend‐alignment liquid‐crystal cell, Journal of the Society for Information Display, vol. 3, pp.29-34, (1995) [29] A. Chandani, T. Hagiwara, Y.-i. Suzuki, Y. Ouchi, H. Takezoe, and A. Fukuda, Tristable switching in surface stabilized ferroelectric liquid crystals with a large spontaneous polarization, Japanese Journal of Applied Physics, vol. 27, p.L729, (1988) [30] T. Ikeda, T. Sasaki, and K. Ichimura, Photochemical switching of polarization in ferroelectric liquid-crystal films, (1993) [31] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.T. Wu, Electro-optics of polymer-stabilized blue phase liquid crystal displays, Applied Physics Letters, vol. 94, p.101104, (2009) [32] K.M. Chen, S. Gauza, H. Xianyu, and S.T. Wu, Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal, Journal of display technology, vol. 6, pp.49-51, (2010) [33] Fang-Wang Gou, Hai-Wei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu, Submillisecond-Response Liquid Crystal for High-Resolution Virtual Reality Displays, Opt. Express 25, 7984-7997, (2017) [34] W.K. Choi, S.T. Wu, Fast Response Liquid Crystal Mode, U.S. Patent No. 7369204 [35] Tae-Hoon Choi, et al., Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls, Scientific Reports 6, (2016) [36] Hai-wei Chen, et al., A Low Voltage Liquid Crystal Phase Grating with Switchable Diffraction Angles, Scientific Reports 7, (2017) [37] Jiao, Meizi, et al, Submillisecond response nematic liquid crystal modulators using dual fringe field switching in vertically aligned cell, Applied Physics Letters 92.11:111101, (2018) [38] Meizi Jiao, Shin-Tson Wu, and Wing-Kit Choi, Fast-Response Single Cell Gap Transflective Liquid Crystal Displays, J. Display Technol. 5, pp.83-85, (2009) [39] Tae-Hoon Choi, Jae-Hyeon Woo, Yeongyu Choi, and Tae-Hoon Yoon, Effect of two-dimensional confinement on switching of vertically aligned liquid crystals by an in-plane electric field, Opt. Express 24, pp.20993-21000, (2016) [40] Tae-Hoon Choi, Yeongyu Choi, Jae-Hyeon Woo, Seung-Won Oh, and Tae-Hoon Yoon, Electro-optical characteristics of an in-plane-switching liquid crystal cell with zero rubbing angle: dependence on the electrode structure, Opt. Express 24, pp.15987-15996, (2016) [41] Wing-Kit Choi and Chia-Hsiang Tung, P‐148: Fast‐Response VA‐FFS Liquid Crystal Mode using 3D Electrode Design, SID Symposium Digest of Technical Papers, Vol. 48. No. 1., (2017) [42] Wing-Kit Choi and Chia-Hsiang Tung, and Bo-Kai Tseng, Fast-Response VA-FFS Liquid Crystal Mode using 3D Electrode Design. SID Symposium Digest of Technical Papers. 48, pp.1838-1840. 10.1002, (2017) [43] Wing-Kit Choi, Chih-Wei Hsu, Chia-Hsiang Tung, and Bo-Kai Tseng, Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode, Opt. Express 27, pp.34343-34358, (2019) [44] H. Y. Kim, S. H. Nam, and S. H. Lee, Dynamic Stability of the Fringe-Field Switching Liquid Crystal Cell Depending on Dielectric Anisotropy of a Liquid Crystal, Jpn. J. Appl. Phys. 42, pp.2752-2755, (2003) [45] S. H. Jung, H. Y. Kim, M.H. Lee, J. M. Rhee, and S. H. Lee, Cell Gap‐Dependent Transmission Characteristics of a Fringe‐Electric Field‐Driven Homogeneously Aligned Liquid Crystal Cell, for a Liquid Crystal With Negative Dielectric Anisotropy, Liq. Cryst. 32, pp.267-275, (2007) [46] Y. Chen, Z. Luo, F. Peng, and S.T. Wu, Fringe-Field Switching with a Negative Dielectric Anisotropy Liquid Crystal, J. Display Technol. 9, pp.74-77,(2013) [47] Meizi Jiao, Shin-Tson Wu, and Wing-Kit Choi, Fast-Response Single Cell Gap Transflective Liquid Crystal Displays, J. Display Technol. 5, pp.83-85, (2009) [48] TaeYong Jung, DaeLim Park, Ji-Sub Park, Joun-Ho Lee, Sungho Kim, Byeong Koo Kim, Hak-Rin Kim, Pixel Design Optimization of Fringe-Field Switching Mode for Applying Negative Liquid Crystals in High-Resolution Mobile Displays, J. Display Technol. 11, pp.229-235, (2015) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76465 | - |
| dc.description.abstract | 在現今社會,液晶顯示器已經隨處可見。快速的響應時間是顯示器的一項重要因素,因為其可以避免問題如動態影像模糊。為了實現高穿透率和快速響應時間,本篇論文將針對具有快速響應時間和高穿透率的垂直配向邊緣場效驅動模式(VA-FFS)進行電腦模擬。我們實驗室發表的「Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode」中[43],討論除了介電各向異性外,具有相同材料參數的正負型液晶,這使得介電各向異性成為引起響應時間差異的主要因素。在與參考文獻[43]相同的條件下的VA-FFS模式,我們將於接下來的討論中進一步發現許多有趣的現象。例如我們將討論二維和三維結構中的電場分佈,從不同的角度給出見解。我們發現負型液晶在三維結構中的非均勻穿透率較不穩定,穿透率不均勻的機制可以透過洞穴區域(電極間隙)中負型液晶分子的旋轉來解釋。同時,本篇論文中亦針對負型液晶在三維結構中的旋轉過程進行研究,以說明“兩步驟”過程,並且將討論改善穿透率的方法。本文分別介紹了上升時間和下降時間的“兩步驟”過程。最後,我們討論了8階灰度表,以進一步檢查不同灰階之間的響應時間,並幫助確定三維VA-FFS模式的平均響應時間。 | zh_TW |
| dc.description.abstract | Nowadays, liquid crystal displays can be seen everywhere. Fast response time is a significant factor for the displays because, e.g. unwanted motion blur can be avoided. In order to achieve high transmittance and fast response time, simulation of vertically-aligned fringe field switching (VA-FFS) mode which features fast response time and high transmittance is discussed in this thesis. In “Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode”[43] published by our laboratory, there are discussions about positive and negative LC with identical material parameters except for the dielectric anisotropy. This makes dielectric anisotropy as the major factor for contributing the difference in response time. Based on VA-FFS LC mode with same conditions as in Reference[43], we further discover many interesting phenomena in this thesis. For example, electric field distributions in 2D and 3D structures are discussed to give new insights from different aspects. Non-uniform transmittance in 3D structure with negative LC is discovered which leads to less stable transmittance. Mechanisms of non-uniform transmittance can be explained by the rotation of molecules of negative LC in the hole regions (electrode gap). Rotation processes in 3D structures with negative LC are examined to illustrate the “two-step” process and methods for improving transmittance will be discussed as well. “Two-step” process parts of rise time and fall time are also individually presented in this thesis. Finally, we also discuss about 8-level gray-to-gray scales to further examine the response time between different gray levels and help determine the average response time of 3D VA-FFS LC mode. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:45Z (GMT). No. of bitstreams: 1 U0001-1208202011105400.pdf: 19037313 bytes, checksum: d5bce766ef774421318ee5c9dca0f652 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i Acknowledgement ii 中文摘要 iii ABSTRACT iv Content v Figure viii Table xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Introduction of Liquid Crystal 1 1.2.1 Nematic Liquid Crystal 2 1.2.2 Birefringence and Phase Retardation 4 1.2.3 Dielectric anisotropy ( ∆ε ) 6 1.2.4 Elastic Constant 8 1.2.5 Response Time 9 1.3 Introduction of Liquid Crystal Display ( LCD ) 11 1.3.1 Structure of Liquid Crystal Display 11 1.3.2 Mechanism of Liquid Crystal Display 12 1.3.3 Alignment of Liquid Crystal Molecules 13 1.4 Development of Display Technology 14 1.4.1 In- Plane Switching ( IPS ) 15 1.4.2 Fringe Field Switching ( FFS ) 16 Chapter 2 Review and Research Objectives 18 2.1 LCD technologies with Fast Response Time 18 2.1.1 Vertically-Aligned Fringe Field Switching (VA-FFS) 18 2.1.2 Three Dimentional Vetrically-Aligned Fringe Field Switching 21 2.2 Motivation 24 Chapter 3 Simulation Methods 25 3.1 Introductions of TechWiz LCD 3D 25 3.2 Materials Database 26 3.3 Mesh Generation Setup 27 3.4 LC Analysis 28 3.4.1 Voltage Signal 28 3.4.2 Surface Alignment Setup 29 3.4.3 Multi-Domain Rubbing 31 3.5 Optical Analysis 33 3.5.1 Linear Polarization 33 3.5.2 Circular Polarization 34 3.6 Response Time 35 Chapter 4 Results and Discussions 37 4.1 Liquid Crystal Behavior in 2D and 3D VA-FFS Mode 37 4.1.1 Electric Field Distributions in 2D Structure 38 4.1.2 Electric Field Distributions in 3D Structure 45 4.1.3 Two-steps Process in 2D and 3D Strucures with Negative LC 51 4.2 The Non-Uniform Transmittance in 3D Structure with Negative LC 53 4.2.1 Comparisons of Different Electrode Gap 54 4.2.2 Mechanisms of Non-Uniform Transmittance 55 4.3 The Rotation Processes in 3D Structure with Negative LC 60 4.3.1 Rise Time Rotation Processes of Negative LC 61 4.3.2 Fall Time Rotation Processes of Negative LC 63 4.4 8-Level Gray-to-Gray (GTG) Scales 68 4.4.1 Definition of Gray Level 69 4.4.2 Response Time of Positive and Negative LC 72 Chapter 5 Conclusion 83 Chapter 6 Appendix 85 6.1 8-Level Gray-to-Gray (GTG) Scales 85 6.1.1 Response Time of Fixed Electrode Width =3 μm 85 6.1.2 Response Time of Fixed Electrode Gap =15μm 91 Reference 97 | |
| dc.language.iso | en | |
| dc.subject | 三維電極結構 | zh_TW |
| dc.subject | 垂直配向邊緣場效驅動 | zh_TW |
| dc.subject | 快速響應時間 | zh_TW |
| dc.subject | 虛擬牆 | zh_TW |
| dc.subject | 灰度等級 | zh_TW |
| dc.subject | 轉動機制 | zh_TW |
| dc.subject | gray level | en |
| dc.subject | switching mechanism | en |
| dc.subject | virtual walls | en |
| dc.subject | three-dimensional electrode | en |
| dc.subject | Fast response time | en |
| dc.subject | vertically aligned fringe field switching | en |
| dc.title | 三維電極結構之垂直配向邊緣場效驅動液晶顯示器元件模擬 | zh_TW |
| dc.title | Simulation in Three-Dimensional Electrode using Vertically-Aligned Fringe Field Switching Liquid Crystal Mode for Device Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖 (Hoang-Yan Lin),黃定洧 (Ding-Wei Huang) | |
| dc.subject.keyword | 快速響應時間,三維電極結構,垂直配向邊緣場效驅動,轉動機制,虛擬牆,灰度等級, | zh_TW |
| dc.subject.keyword | Fast response time,three-dimensional electrode,vertically aligned fringe field switching,switching mechanism,virtual walls,gray level, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202003061 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1208202011105400.pdf | 18.59 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
