Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor簡韶逸(Shao-Yi Chien)
dc.contributor.authorHung-Yu Tsengen
dc.contributor.author曾泓諭zh_TW
dc.date.accessioned2021-07-09T15:52:42Z-
dc.date.available2021-07-05
dc.date.copyright2016-07-05
dc.date.issued2016
dc.date.submitted2016-06-23
dc.identifier.citation[1] S. Gauglitz, T. Hぴollerer, and M. Turk, “Evaluation of interest point detectors
and feature descriptors for visual tracking,” International Journal of Computer
Vision, vol. 94, no. 3, pp. 335–360, 2011.
[2] R. T. Azuma, “A survey of augmented reality,” Presence: Teleoperators and
virtual environments, vol. 6, no. 4, pp. 355–385, 1997.
[3] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for a
video-based augmented reality conferencing system,” in Proc. IEEE and
ACM International Workshop on Augmented Reality, 1999.
[4] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, “Virtual
object manipulation on a table-top ar environment,” in Proc. IEEE and
ACM International Symposium on Augmented Reality. Ieee, 2000, pp. 111–
119.
[5] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim, “Immersive authoring
of tangible augmented reality applications,” in Proc. IEEE International
Symposium on Mixed and Augmented Reality, 2004.
[6] N. Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst, “Shape recognition
and pose estimation for mobile augmented reality,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 10, pp. 1369–1379, 2011.
[7] M. Donoser, P. Kontschieder, and H. Bischof, “Robust planar target tracking
and pose estimation from a single concavity,” in Proc. IEEE International
Symposium on Mixed and Augmented Reality, 2011.
[8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, 2004.
[9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf),” Computer Vision and Image Understanding, vol. 110, no. 3, 2008.
[10] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust Invariant
Scalable Keypoints,” in Proc. IEEE International Conference on Computer
Vision, 2011.
[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient alternative
to sift or surf,” in Proc. IEEE International Conference on Computer
Vision, 2011.
[12] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2012.
[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[14] O. Chum and J. Matas, “Matching with prosac-progressive sample consensus,”
in Proc. IEEE Conference on Computer Vision and Pattern Recognition,
2005.
[15] T.-J. Chin, P. Purkait, A. Eriksson, and D. Suter, “Efficient globally optimal
consensus maximisation with tree search,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2015.
[16] G. Schweighofer and A. Pinz, “Robust Pose Estimation from a Planar Target,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 12, 2006.
[17] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate O(n) solution
to the pnp problem,” International Journal of Computer Vision, vol. 81,
no. 2, 2009.
[18] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, “Revisiting
the PnP Problem: A Fast, General and Optimal Solution,” in Proc. IEEE
International Conference on Computer Vision, 2013.
[19] T. Collins and A. Bartoli, “Infinitesimal plane-based pose estimation,” International
Journal of Computer Vision, vol. 109, no. 3, pp. 252–286, 2014.
[20] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with
an application to stereo vision.” vol. 81, 1981, pp. 674–679.
[21] G. D. Hager and P. N. Belhumeur, “Efficient region tracking with parametric
models of geometry and illumination,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 10, pp. 1025–1039, 1998.
[22] H.-Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with
global and local alignment,” 2001, pp. 227–268.
[23] S. Baker and I. Matthews, “Equivalence and efficiency of image alignment
algorithms,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2001.
[24] E. Malis, “Improving vision-based control using efficient second-order minimization
techniques,” 2004.
[25] A. Crivellaro and V. Lepetit, “Robust 3d tracking with descriptor fields,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[26] J. Engel, T. Schぴops, and D. Cremers, “Lsd-slam: Large-scale direct monocular
slam,” in Proc. European Conference on Computer Vision, 2014.
[27] Y.-T. Chi, J. Ho, and M.-H. Yang, “A direct method for estimating planar
projective transform,” in Proc. Asian Conference on Computer Vision, 2011.
[28] S. Korman, D. Reichman, G. Tsur, and S. Avidan, “Fast-match: Fast affine
template matching,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2013.
[29] J. F. Henriques, P. Martins, R. F. Caseiro, and J. Batista, “Fast training of
pose detectors in the fourier domain,” in Proc. Annual Conference on Neural
Information Processing Systems, 2014.
[30] D. Oberkampf, D. F. DeMenthon, and L. S. Davis, “Iterative pose estimation
using coplanar points,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 1993.
[31] S. Li and C. Xu, “Efficient lookup table based camera pose estimation for
augmented reality,” vol. 22, no. 1, pp. 47–58, 2011.
[32] P.-C. Wu, Y.-H. Tsai, and S.-Y. Chien, “Stable pose tracking from a planar
target with an analytical motion model in real-time applications,” 2014.
[33] J. Stork, “Camera pose estimation with circular markers,” Ph.D. dissertation,
Thesis, University of Amsterdam (UvA), 2012.
[34] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” 2011.
[35] D. Wagner and D. Schmalstieg, Artoolkitplus for pose tracking on mobile
devices, 2007.
[36] J. Rekimoto and Y. Ayatsuka, “Cybercode: designing augmented reality environments
with visual tags,” in Proceedings of DARE 2000 on Designing
augmented reality environments. ACM, 2000.
[37] S. Lieberknecht, Q. Stierstorfer, G. Kuschk, D. Ulbricht, M. Langer, and
S. Benhimane, “Evolution of a tracking system,” in Handbook of Augmented
Reality. Springer, 2011, pp. 355–377.
[38] D. Schmalstieg and D. Wagner, “Experiences with handheld augmented reality,”
in Proc. IEEE International Symposium on Mixed and Augmented
Reality, 2007.
[39] S.-W. Shih and T.-Y. Yu, “On designing an isotropic fiducial mark,” IEEE
Transactions on Image Processing, vol. 12, no. 9, pp. 1054–1066, 2003.
[40] F. Bergamasco, A. Albarelli, E. Rodola, and A. Torsello, “Rune-tag: A high
accuracy fiducial marker with strong occlusion resilience,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2011.
[41] P. Santos, A. Stork, A. Buaes, and J. Jorge, “Ptrack: introducing a novel iterative
geometric pose estimation for a marker-based single camera tracking
system,” in Proc. IEEE Virtual Reality, 2006.
[42] H. Uchiyama and E. Marchand, “Deformable random dot markers,” in Proc.
IEEE International Symposium on Mixed and Augmented Reality, 2011.
[43] G. Yu and J.-M. Morel, “Asift: A new framework for fully affine invariant
image comparison,” Image Processing On Line, 2011.
[44] C.-P. Lu, G. D. Hager, and E. Mjolsness, “Fast and globally convergent pose
estimation from video images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 6, pp. 610–622, 2000.
[45] S. Li, C. Xu, and M. Xie, “A robust o (n) solution to the perspective-n-point
problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 7, pp. 1444–1450, 2012.
[46] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp.
1330–1334, 2000.
[47] P. Sturm, “Algorithms for plane-based pose estimation,” in Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2000.
[48] T. Collins, J.-D. Durou, P. Gurdjos, and A. Bartoli, “Singleview perspective
shape-from-texture with focal length estimation: A piecewise affine approach,”
in International Symposium 3D Data Processing, Visualization and
Transmission, 2010.
[49] O. Pele and M. Werman, “Accelerating pattern matching or how much can
you slide?” in Proc. Asian Conference on Computer Vision, 2007.
[50] B. Alexe, V. Petrescu, and V. Ferrari, “Exploiting spatial overlap to efficiently
compute appearance distances between image windows,” in Proc.
Annual Conference on Neural Information Processing Systems, 2011, pp.
2735–2743.
[51] L.-K. Liu and E. Feig, “A block-based gradient descent search algorithm for
block motion estimation in video coding,” IEEE Transactions on Circuits
and Systemsfor Video Technology, vol. 6, no. 4, pp. 419–422, 1996.
[52] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast blockmatching
motion estimation,” IEEE Transactions on Image Processing,
vol. 9, no. 2, pp. 287–290, 2000.
[53] C. Zhu, X. Lin, and L.-P. Chau, “Hexagon-based search pattern for fast block
motion estimation,” IEEE Transactions on Circuits and Systemsfor Video
Technology, vol. 12, no. 5, pp. 349–355, 2002.
[54] D. Eberly, “Euler angle formulas,” Geometric Tools, LLC, Technical Report,
2008.
[55] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data.
AMLBook, 2012.
[56] L. Kneip, H. Li, and Y. Seo, “Upnp: An optimal o (n) solution to the absolute
pose problem with universal applicability,” in Proc. European Conference on
Computer Vision, 2014.
[57] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab, “A dataset and
evaluation methodology for template-based tracking algorithms,” in Proc.
IEEE International Symposium on Mixed and Augmented Reality, 2009.
[58] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geometric
consistency for large scale image search,” in Proc. European Conference
on Computer Vision, 2008.
[59] N. Bell and J. Hoberock, “Thrust: a productivity-oriented library for cuda,”
GPU Computing Gems: Jade Edition, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76461-
dc.description.abstract近年來,隨著擴充實境與機器人學的發展,如何即時且準確地分析已知的單一平面目標物其三維姿態成為了一個重要的議題。即使過去十幾年中,不少有效率的系統陸續被提出,但由於這些系統只能針對特定的平面目標物,如基準標記或含有簡易封閉曲線的平面目標物,此問題仍舊缺少一個適用於任意平面目標物的解決方法。目前針對此問題最好的解決方法為基於特徵點的方法,但是此方法必須在目標物與相機圖片中的特徵點能對應的前提下才能運作。
為了解決這個問題,在本篇碩士論文中,我們提出了一個表現穩定、能針對任意平面目標物的直接分析演算法。首先,我們採用模板匹配的概念求出一個近似的三維姿態。接下來針對此近似的三維姿態,我們提出了一個梯度下降尋找的演算法來求出更為精準的三維姿態。更進一步,基於所提出的演算法,我們在圖形處理器上實作了一套分析和追蹤平面目標物之三維姿態的系統。此系統包含了分析單元和追蹤單元兩部分。分析單元負責計算出起始的三維姿態,是基於我們提出的演算法所設計的;追蹤單元則負責追蹤三維姿態,其所使用的方法為我們提出的一種三階層搜尋法。在系統中,無論是分析單元還是追蹤單元都充分利用了圖形處理器中平行運算的優點,使得我們的系統能夠非常有效率的運作。我們透過大量的實驗,證明我們所提出的演算法和系統,其表現都比目前基於特徵點的方法要更精準而且穩定。並於實際應用中,我們的系統達到了每秒11幀的運算速度。
zh_TW
dc.description.abstractReal-time estimating and tracking accurate 3D poses of a known planar target from a calibrated camera are essential for augmented reality and robotics. Although numerous efficient systems have been proposed in the past few decades, it remains a challenging task since the planar targets are limited to fiducial markers and targets with simple contours. The feature-based schemes are the state-of-the-art solutions for obtaining poses of arbitrary planar targets. However the success hinges on whether feature points can be extracted and matched correctly on targets with rich texture.
In this thesis, we propose a robust direct method for 3D pose estimation with high accuracy that performs well on both texture and textureless planar targets. First, the pose of a planar target with respect to a calibrated camera is approximated estimated by posing it as a template matching problem. Next, the object pose is further refined and disambiguated with a gradient descent search scheme. In order to make the proposed algorithm applicable, we also develop D-PET, a direct 3D pose estimation and tracking system implemented on graphics computing units (GPU) which is able to obtain poses in real-time. The system consists of a pose estimation unit and a pose tracker. The pose estimation unit is built based on the approximated pose estimation scheme in the proposed algorithm to find the initial pose. A 3-scale search scheme is proposed for the pose tracker to track the pose precisely. Both of them utilize the characteristics of GPU and accomplish the work efficiently. Extensive experiments on both synthetic and real datasets demonstrate that both the proposed algorithm and system perform favorably against state-of-the-art feature-based approaches in terms of accuracy and robustness. The proposed system achieves a processing speed of 11 fps on an embedded GPU.
en
dc.description.provenanceMade available in DSpace on 2021-07-09T15:52:42Z (GMT). No. of bitstreams: 1
ntu-105-R03943005-1.pdf: 23533894 bytes, checksum: 3e8e3abb9b36dce3e47e342bfec7c570 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction 1
1.1 3D Pose Estimation . . . . . . . . . . 1
1.2 Pose Ambiguity . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . 3
1.4 Thesis organization . . . . . . . . . 5
2 Background Knowledge and Related Works 7
2.1 Problem Definition . . . . . . . . . . 7
2.2 State-of-the-Art Pose Estimation . . . 9
2.2.1 Marker-based Pose Estimation . . . . 9
2.2.2 Feature-based Pose Estimation . . . 10
2.3 Template Matching . . . . . . . . . . 11
2.4 Motion Estimation . . . . . . . . . . 12
3 Direct Pose Estimation and Tracking 13
3.1 Approximated Pose Estimation . . . . . 13
3.1.1 e-Covering Set Construction . . . . 14
3.1.2 Coarse-to-Fine Estimation . . . . . 18
3.2 Pose Refinement . . . . . . . . . . . 21
3.2.1 Candidate Poses Exploration . . . . 22
3.2.2 Refining Pose Estimation . . . . . . 22
4 Experiments 25
4.1 Synthetic Dataset . . . . . . . . . . 26
4.1.1 Normal Condition . . . . . . . . . . 27
4.1.2 Varying Conditions . . . . . . . . . 29
4.1.3 Refinement Analysis . . . . . . . . 29
4.2 Real Dataset . . . . . . . . . . . . . 38
4.3 Runtime Comparison . . . . . . . . . . 42
4.4 Textureless Images . . . . . . . . . . 42
5 Direct Pose Estimation and Tracking System 45
5.1 Proposed System . . . . . . . . . . . 45
5.1.1 Initialization . . . . . . . . . . . 46
5.1.2 Coarse-to-Fine Estimation. . . . . . 47
5.1.3 Pose Tracker . . . . . . . . . . . . 49
5.2 Evaluation . . . . . . . . . . . . . . 51
5.2.1 Pose Estimation Unit . . . . . . . . 52
5.2.2 Pose Tracker . . . . . . . . . . . . 54
5.3 Practical Tests . . . . . . . . . . . 56
6 Conclusion 59
Reference 61
dc.language.isoen
dc.subject平行運算zh_TW
dc.subject三維姿態分析zh_TW
dc.subject三維姿態追蹤zh_TW
dc.subject直接分析zh_TW
dc.subject3D Pose Trackingen
dc.subject3D Pose Estimationen
dc.subjectGPUen
dc.subjectParallel Computingen
dc.subjectDirect-Baseden
dc.title針對單一平面目標物之三維姿態的直接分析:演算法和系統實作zh_TW
dc.titleDirect 3D Pose Estimation of a Planar Target: Algorithm and Implementationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor楊明玄(Ming-Hsuan Yang)
dc.contributor.oralexamcommittee莊永裕(Yung-Yu Chuang),傅立成(Li-Chen Fu),黃朝宗(Chao-Tsung Huang)
dc.subject.keyword三維姿態分析,三維姿態追蹤,直接分析,平行運算,zh_TW
dc.subject.keyword3D Pose Estimation,3D Pose Tracking,Direct-Based,Parallel Computing,GPU,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201600474
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-06-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2021-07-05-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-R03943005-1.pdf22.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved