Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76457Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 葉秀慧(Shiou-Hwei Yeh) | |
| dc.contributor.author | Zao-You Jean | en |
| dc.contributor.author | 簡兆佑 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:52:38Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | 1. Seeger, C. and W.S. Mason, Molecular biology of hepatitis B virus infection. Virology, 2015. 479-480: p. 672-86. 2. Patient, R., et al., Hepatitis B virus subviral envelope particle morphogenesis and intracellular trafficking. J Virol, 2007. 81(8): p. 3842-51. 3. Yuen, M.F., et al., Hepatitis B virus infection. Nat Rev Dis Primers, 2018. 4: p. 18035. 4. Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 2012. 1: p. e00049. 5. Zlotnick, A., et al., Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res, 2015. 121: p. 82-93. 6. Arzumanyan, A., H.M. Reis, and M.A. Feitelson, Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer, 2013. 13(2): p. 123-35. 7. El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012. 142(6): p. 1264-1273 e1. 8. Burns, G.S. and A.J. Thompson, Viral hepatitis B: clinical and epidemiological characteristics. Cold Spring Harb Perspect Med, 2014. 4(12): p. a024935. 9. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 10. Tang, A., et al., Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY), 2018. 43(1): p. 13-25. 11. Li, C.L., et al., Androgen Receptor Enhances Hepatic Telomerase Reverse Transcriptase Gene Transcription After Hepatitis B Virus Integration or Point Mutation in Promoter Region. Hepatology, 2019. 69(2): p. 498-512. 12. Yu, M.W., et al., Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst, 2000. 92(24): p. 2023-8. 13. Yu, M.W., et al., Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men. J Natl Cancer Inst, 2001. 93(21): p. 1644-51. 14. Tang, H., et al., Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci, 2006. 97(10): p. 977-83. 15. Lamontagne, R.J., S. Bagga, and M.J. Bouchard, Hepatitis B virus molecular biology and pathogenesis. Hepatoma Res, 2016. 2: p. 163-186. 16. Chiu, C.M., et al., Hepatitis B virus X protein enhances androgen receptorresponsive gene expression depending on androgen level. Proc Natl Acad Sci U S A, 2007. 104(8): p. 2571-8. 17. Yang, W.J., et al., Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase- 3beta kinase pathways. Hepatology, 2009. 49(5): p. 1515-24. 18. Chen, P.J., et al., Androgen pathway stimulates microRNA-216a transcription to suppress the tumor suppressor in lung cancer-1 gene in early hepatocarcinogenesis. Hepatology, 2012. 56(2): p. 632-43. 19. Wang, S.H., et al., Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B. Hepatology, 2009. 50(5): p. 1392-402. 20. Wang, S.H., S.H. Yeh, and P.J. Chen, The driving circuit of HBx and androgen receptor in HBV-related hepatocarcinogenesis. Gut, 2014. 63(11): p. 1688-9. 21. Wang, S.H., P.J. Chen, and S.H. Yeh, Gender disparity in chronic hepatitis B: Mechanisms of sex hormones. J Gastroenterol Hepatol, 2015. 30(8): p. 1237-45. 22. Wang, S.H., et al., Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1. J Natl Cancer Inst, 2015. 107(10). 23. Koryakina, Y., H.Q. Ta, and D. Gioeli, Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer, 2014. 21(4): p. T131-45. 24. Azad, A.A., et al., Targeting heat shock proteins in metastatic castrationresistant prostate cancer. Nat Rev Urol, 2015. 12(1): p. 26-36. 25. Yu, I.C., et al., Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes, 2014. 63(10): p. 3180-8. 26. Lin, H.Y., et al., Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology, 2008. 47(6): p. 1924-35. 27. Wang, J., et al., Overfeeding rapidly induces leptin and insulin resistance. Diabetes, 2001. 50(12): p. 2786-91. 28. Samuel, V.T., et al., Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem, 2004. 279(31): p. 32345-53. 29. Expert Panel on Detection, E. and A. Treatment of High Blood Cholesterol in, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001. 285(19): p. 2486-97. 30. Srikanthan, K., et al., Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int J Med Sci, 2016. 13(1): p. 25-38. 31. Razi, B., et al., Association of chronic hepatitis B infection with metabolic syndrome and its components: Meta-analysis of observational studies. Diabetes Metab Syndr, 2017. 11 Suppl 2: p. S939-S947. 32. Jarcuska, P., et al., Association between hepatitis B and metabolic syndrome: Current state of the art. World J Gastroenterol, 2016. 22(1): p. 155-64. 33. Li, Y., Y. Zhao, and J. Wu, Serum HBV surface antigen positivity is associated with low prevalence of metabolic syndrome: A meta-analysis. PLoS One, 2017. 12(5): p. e0177713. 34. Kuo, Y.H., et al., Association between chronic viral hepatitis and metabolic syndrome in southern Taiwan: a large population-based study. Aliment Pharmacol Ther, 2018. 48(9): p. 993-1002. 35. Jinjuvadia, R. and S. Liangpunsakul, Association between metabolic syndrome and its individual components with viral hepatitis B. Am J Med Sci, 2014. 347(1): p. 23-7. 36. Zhou, Y., et al., Association between hepatitis B virus infection and metabolic syndrome: a retrospective cohort study in Shanghai, China. BMC Public Health, 2014. 14: p. 516. 37. Janicko, M., et al., Association between metabolic syndrome and hepatitis B virus infection in the Roma population in eastern Slovakia: a population-based study. Cent Eur J Public Health, 2014. 22 Suppl: p. S37-42. 38. Luo, B., Y. Wang, and K. Wang, Association of metabolic syndrome and hepatitis B infection in a Chinese population. Clin Chim Acta, 2007. 380(1-2): p. 238-40. 39. Jarcuska, P., et al., Hepatitis B virus infection in patients with metabolic syndrome: a complicated relationship. Results of a population based study. Eur J Intern Med, 2014. 25(3): p. 286-91. 40. Jan, C.F., et al., A population-based study investigating the association between metabolic syndrome and hepatitis B/C infection (Keelung Community-based Integrated Screening study No. 10). Int J Obes (Lond), 2006. 30(5): p. 794-9. 41. Choi, J.S., et al., Serum HBV surface antigen positivity is associated with low prevalence of metabolic syndrome in Korean adult men. J Epidemiol, 2015. 25(1): p. 74-9. 42. Wong, V.W., et al., Hepatitis B virus infection and fatty liver in the general population. J Hepatol, 2012. 56(3): p. 533-40. 43. Chung, T.H., M.C. Kim, and C.S. Kim, Association between Hepatitis B Surface Antigen Seropositivity and Metabolic Syndrome. Korean J Fam Med, 2014. 35(2): p. 81-9. 44. Li, W.C., et al., Association between the hepatitis B and C viruses and metabolic diseases in patients stratified by age. Liver Int, 2013. 33(8): p. 1194-202. 45. Yan, L.B., et al., Association between Hepatitis B Virus Infection and Metabolic Syndrome in Southwest China: A Cross-sectional Study. Sci Rep, 2020. 10(1): p. 6738. 46. Huang, J.F., et al., Hepatitis C virus infection and metabolic syndrome---a community-based study in an endemic area of Taiwan. Kaohsiung J Med Sci, 2009. 25(6): p. 299-305. 47. Rajkumar, P., et al., The association between metabolic syndrome and Hepatitis C virus infection in the United States. Cancer Causes Control, 2020. 31(6): p. 569-581. 48. Wu, B.K., et al., Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun, 2006. 340(3): p. 916-28. 49. Hussain, Y., et al., G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies. Arterioscler Thromb Vasc Biol, 2015. 35(1): p. 213-21. 50. Qiu, S., et al., Hepatic estrogen receptor alpha is critical for regulation of gluconeogenesis and lipid metabolism in males. Sci Rep, 2017. 7(1): p. 1661. 51. Palmisano, B.T., L. Zhu, and J.M. Stafford, Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv Exp Med Biol, 2017. 1043: p. 227-256. 52. Han, J., et al., Hepatitis B virus X protein and the estrogen receptor variant lacking exon 5 inhibit estrogen receptor signaling in hepatoma cells. Nucleic Acids Res, 2006. 34(10): p. 3095-106. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76457 | - |
| dc.description.abstract | B 型肝炎病毒(hepatitis B virus, HBV)的感染會造成慢性肝臟發炎,導致肝細胞癌的發生。在B 型肝炎病毒感染造成慢性肝炎的過程中,病毒除了會影響到肝細胞癌的發生外,對肝臟正常的功能也可能會產生影響。由於肝臟是調控新陳代謝作用上非常重要的器官,尤其是脂質和醣類的代謝,因此B 型肝炎病毒的感染有可能會影響到正常的新陳代謝作用,進而影響代謝症候群的發生。在回顧了相關的流行病學的研究後,觀察到B 型肝炎的患者與代謝症候群之間呈現一負相關的現象,並且主要為男性病患較具有此現象,然而C 型肝炎病毒性肝炎反而與代謝症候群呈現正相關,因此與代謝症候群之間的負相關性為B 型肝炎所特有。根據此現象,在本篇論文中提出一個假說:B 型肝炎病毒可能會透過與男性性別相關之特定因子進行交互作用,影響肝臟正常的新陳代謝功能,造成男性B 型肝炎患者比較不容易罹患代謝症候群之現象。在先前的文獻和實驗室先前研究中,發現雄性激素受體(androgen receptor, AR)途徑在肝臟內會調控醣類的代謝,因此推論男性性別相關之特定因子可能為雄性激素受體途徑。此外在實驗室先前的研究中也提出,B 型肝炎病毒的X 蛋白質(HBx)能夠調控雄性激素受體的功能,因此本論文將測試HBx 蛋白是否會透過正向調控雄性激素受體之功能,進而抑制代謝症候群發生之可能。本篇論文使用了HBx 蛋白基因轉殖小鼠(HBx-transgenic mice, HBx-Tg mice)及HBx 蛋白基因轉殖/雄性激素受體基因剔除小鼠(HBx-transgenic/AR knockout mice, HBx-Tg/ARKO mice),進行此假說之測試。首先在雄性HBx-Tg 小鼠中發現HBx 蛋白可能會造成雄性激素受體表現量之增加;此外進一步分析新陳代謝相關的表現型,也發現雄性HBx-Tg 小鼠表現出與雄性雄性激素受體基因轉殖小鼠(AR-Tg mice)類似體重較輕、白色脂肪組織較少及血糖較低之現象,而雄性激素受體基因之剔除會降低這些表現型在HBx-Tg 小鼠之發生。進一步也發現雄性HBx-Tg 小鼠之肝臟中糖質新生作用有受到抑制之現象。本論文結果因此初步支持HBx 蛋白可能透過調控雄性激素受體對糖質新生作用,抑制男性B 肝患者代謝症候群發生之可能。 | zh_TW |
| dc.description.abstract | Infection of hepatitis B virus (HBV) causes persistent chronic hepatitis, which eventually leads to the severe liver diseases, such as cirrhosis and liver cancer. As liver is a key organ in regulating metabolism, especially the carbohydrate and lipid biogenesis, HBV infection might not only affect the carcinogenic process but also affect the hepatic metabolic functions. Several epidemiological studies well documented that HBV patients have significantly lower probability to develop metabolic syndrome, which is more evident in the male than in female patients. Such a correlation however is absent in chronic hepatitis C patients, who are in contrast prone to develop metabolic syndrome. Therefore, it raises a possibility that a specific HBV factor might interact with a male gender specific factor to inhibit metabolic syndrome in male HBV patients. As the clues from literature review and also from our previous studies in hepatic androgen receptor (AR) transgenic and AR knockout mice, the hepatic AR pathway might regulate the glucose metabolism in liver. Moreover, our previous study also identified an interactive effect between HBV X protein (HBx protein) and hepatic AR. Therefore, we proposed to test a hypothesis that HBx could interact with AR in hepatocytes to regulate the glucose metabolism, as a mechanism for decreasing the probability of male hepatitis B patients to develop metabolic syndrome. This hypothesis has been tested in the HBx transgenic (HBx-Tg) and HBx-Tg/AR knockout (HBx-Tg/ARKO) mice. The results first demonstrated that HBx can elevate the hepatic AR protein level in the male HBx-Tg mice. A decrease of body weight in association with the lower white adipose tissues and lower blood glucose levels was further identified in the male HBx-Tg mice, consistent with the phenotypes identified in hepatic AR-Tg male mice. These phenotypes were diminished in the HBx-Tg/ARKO mice and thus were AR pathway dependent. Moreover, we also demonstrated that the gluconeogenesis was significantly decreased in the HBx-Tg male mice. These results thus preliminarily supported that HBx might through elevating hepatic AR to suppress the hepatic gluconeogenesis as one mechanism to decrease the development of metabolic syndrome in male HBV patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:38Z (GMT). No. of bitstreams: 1 U0001-1508202017124500.pdf: 2903387 bytes, checksum: 6d190d02a138ff231f05b27c5b396de8 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書......................................................................... I 致謝辭 .................................................................................. II 摘要 .................................................................................... III ABSTRACT ................................................................................ IV 目錄 .................................................................................... V 序論 .................................................................................... 1 B 型肝炎病毒與B 型肝炎................................................................... 1 B 型肝炎病毒造成之肝細胞癌具有性別差異並與雄性激素受體途徑有關........................... 1 B 型肝炎病毒透過與雄性激素受體交互作用而增加肝癌發生率................................... 2 在正常肝臟中雄性激素受體途徑對新陳代謝作用的影響......................................... 3 B 型肝炎與代謝症候群之間具有負相關性且主要為男性病患有此現象............................. 4 B 型肝炎與代謝症候群間的負相關性非病毒性肝炎所共有....................................... 5 肝臟對於正常新陳代謝作用的調控........................................................... 5 研究目的 ................................................................................ 7 實驗材料與方法 .......................................................................... 8 材料 .................................................................................... 8 實驗方法 ................................................................................ 10 1. 小鼠禁食(fasting) .................................................................. 10 2. 量秤小鼠體重 ......................................................................... 10 3. 採集小鼠血液 ......................................................................... 10 4. 血液檢測(blood test) ............................................................... 10 5. 量測小鼠血糖 ......................................................................... 10 6. 口服葡萄糖(feeding glucose by gavage)............................................... 10 7. 小鼠犧牲(sacrifice)................................................................. 10 8. 西方墨點法(Western blotting) ....................................................... 11 9. 蘇木素及伊紅染色法(H E staining) ................................................. 12 10. 升糖素耐受性試驗(glucagon tolerance test) ......................................... 12 11. 免疫組織化學染色法(immunohistochemistry staining, IHC staining).................... 12 12. 油紅 O 染色法(oil-red O staining) ................................................. 13 實驗結果 ................................................................................ 14 HBX-TG 小鼠禁食再口服葡糖糖後,雄性激素受體表現量較對照組增加............................ 14 HBX-TG 小鼠體重相較於對照組呈現下降的趨勢是經由雄性激素受體所造成之白色脂肪組織減少...... 14 HBX-TG 小鼠體重禁食後的血糖與對照組相比下較低,且此表現型是透過雄性激素受體途徑所造成.... 15 HBX-TG 小鼠年紀在7~9 月大時,肝臟的外觀和組織結構與對照組間沒有顯著的差異............... 16 HBX-TG 小鼠在禁食時糖質新生作用會受到抑制................................................ 16 討論 .................................................................................... 18 X 蛋白質在禁食時是如何調控雄性激素受體的表現............................................. 18 以 X 蛋白質-轉位子在單顆細胞的層次上觀察X 蛋白質對於雄性激素受體的調控................... 18 HBX-TG 小鼠體重在12 個月大以後,體重比AR-TG 小鼠還要來得低............................... 18 HBX-TG 小鼠三酸甘油酯和總膽固醇的調控可能主要受到X 蛋白質下游其他機制影響................ 19 肝臟的外觀與組織結構和WT小鼠比較後並無差異,但肝臟/體重的比值HBX-TG 小鼠卻比較高........ 19 雌性激素受體途徑在與肝臟相關的新陳代謝作用上之功能....................................... 20 參考文獻 ................................................................................ 21 圖表 .................................................................................... 26 | |
| dc.language.iso | zh-TW | |
| dc.subject | B 型肝炎病毒 | zh_TW |
| dc.subject | 雄性激素受體 | zh_TW |
| dc.subject | B 肝病毒X 蛋白質 | zh_TW |
| dc.subject | 代謝症候群 | zh_TW |
| dc.subject | metabolic syndrome | en |
| dc.subject | androgen receptor | en |
| dc.subject | hepatitis B virus | en |
| dc.subject | HBV virus X protein | en |
| dc.title | B 型肝炎病毒X 蛋白質透過與肝臟雄性激素受體途徑交互作用共同調控肝臟新陳代謝作用 | zh_TW |
| dc.title | HBV X protein interacts with the hepatic androgen receptor pathway in regulating the liver metabolism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),楊宏志(Hung-Chih Yang),王聖涵(Sheng-Han Wang) | |
| dc.subject.keyword | B 型肝炎病毒,代謝症候群,B 肝病毒X 蛋白質,雄性激素受體, | zh_TW |
| dc.subject.keyword | hepatitis B virus,metabolic syndrome,HBV virus X protein,androgen receptor, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU202003529 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-17 | - |
| Appears in Collections: | 微生物學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1508202017124500.pdf | 2.84 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
