請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76455
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑞華(Ruey-Hwa Chen) | |
dc.contributor.author | "Chi-Huan, Ho" | en |
dc.contributor.author | 何其寰 | zh_TW |
dc.date.accessioned | 2021-07-09T15:52:36Z | - |
dc.date.available | 2021-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-05 | |
dc.identifier.citation | 1. Savill, J. and V. Fadok, Corpse clearance defines the meaning of cell death. Nature, 2000. 407(6805): p. 784-8.
2. Kurosaka, K., et al., Silent cleanup of very early apoptotic cells by macrophages. J Immunol, 2003. 171(9): p. 4672-9. 3. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516. 4. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57. 5. Thornberry, N.A., Caspases: key mediators of apoptosis. Chem Biol, 1998. 5(5): p. R97-103. 6. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281(5381): p. 1312-6. 7. Gervais, F.G., et al., Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem, 1998. 273(27): p. 17102-8. 8. Nagata, S., Apoptosis by death factor. Cell, 1997. 88(3): p. 355-65. 9. Riedl, S.J. and G.S. Salvesen, The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol, 2007. 8(5): p. 405-13. 10. Martinez-Ruiz, G., et al., Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res, 2008. 27: p. 48. 11. Vande Walle, L., M. Lamkanfi, and P. Vandenabeele, The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ, 2008. 15(3): p. 453-60. 12. Hetz, C.A., ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal, 2007. 9(12): p. 2345-55. 13. Hardwick, J.M. and L. Soane, Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol, 2013. 5(2). 14. Hanada, M., et al., Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem, 1995. 270(20): p. 11962-9. 15. Cheng, E.H., et al., Conversion of Bcl-2 to a Bax-like death effector by caspases. Science, 1997. 278(5345): p. 1966-8. 16. Wang, Y., et al., Oligomerization of BH4-truncated Bcl-x(L) in solution. Biochem Biophys Res Commun, 2007. 361(4): p. 1006-11. 17. Westphal, D., et al., Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta, 2011. 1813(4): p. 521-31. 18. Miyashita, T. and J.C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 1995. 80(2): p. 293-9. 19. Oda, E., et al., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000. 288(5468): p. 1053-8. 20. Nakano, K. and K.H. Vousden, PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell, 2001. 7(3): p. 683-94. 21. Mathai, J.P., et al., Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene, 2002. 21(16): p. 2534-44. 22. Yamamoto, K., H. Ichijo, and S.J. Korsmeyer, BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol, 1999. 19(12): p. 8469-78. 23. Kharbanda, S., et al., Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem, 2000. 275(1): p. 322-7. 24. Donovan, N., et al., JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem, 2002. 277(43): p. 40944-9. 25. Inoshita, S., et al., Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem, 2002. 277(46): p. 43730-4. 26. Lei, K. and R.J. Davis, JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A, 2003. 100(5): p. 2432-7. 27. Kim, B.J., S.W. Ryu, and B.J. Song, JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem, 2006. 281(30): p. 21256-65. 28. Prakasam, A., et al., JNK1/2 regulate Bid by direct phosphorylation at Thr59 in response to ALDH1L1. Cell Death Dis, 2014. 5: p. e1358. 29. Deng, X., et al., Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1578-83. 30. Ley, R., et al., Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem, 2003. 278(21): p. 18811-6. 31. Luciano, F., et al., Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene, 2003. 22(43): p. 6785-93. 32. Deng, X., et al., Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci U S A, 2004. 101(1): p. 153-8. 33. Domina, A.M., et al., MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene, 2004. 23(31): p. 5301-15. 34. Shen, Z.J., et al., The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation. Nat Immunol, 2009. 10(3): p. 257-65. 35. Lopez, J., et al., Src tyrosine kinase inhibits apoptosis through the Erk1/2- dependent degradation of the death accelerator Bik. Cell Death Differ, 2012. 19(9): p. 1459-69. 36. Akiyama, T., et al., Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J, 2003. 22(24): p. 6653-64. 37. Dehan, E., et al., betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell, 2009. 33(1): p. 109-16. 38. Thompson, S., et al., Identification of a novel Bcl-2-interacting mediator of cell death (Bim) E3 ligase, tripartite motif-containing protein 2 (TRIM2), and its role in rapid ischemic tolerance-induced neuroprotection. J Biol Chem, 2011. 286(22): p. 19331-9. 39. Ding, Q., et al., Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol, 2007. 27(11): p. 4006-17. 40. Zhong, Q., et al., Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell, 2005. 121(7): p. 1085-95. 41. Inuzuka, H., et al., SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature, 2011. 471(7336): p. 104-9. 42. Boyd, J.M., et al., Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene, 1995. 11(9): p. 1921-8. 43. Verma, S., et al., Structural analysis of the human pro-apoptotic gene Bik: chromosomal localization, genomic organization and localization of promoter sequences. Gene, 2000. 254(1-2): p. 157-62. 44. Elangovan, B. and G. Chinnadurai, Functional dissection of the pro-apoptotic protein Bik. Heterodimerization with anti-apoptosis proteins is insufficient for induction of cell death. J Biol Chem, 1997. 272(39): p. 24494-8. 45. Shimazu, T., et al., NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev, 2007. 21(8): p. 929-41. 46. Verma, S., L.J. Zhao, and G. Chinnadurai, Phosphorylation of the pro-apoptotic protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem, 2001. 276(7): p. 4671-6. 47. Li, Y.M., et al., Enhancement of Bik antitumor effect by Bik mutants. Cancer Res, 2003. 63(22): p. 7630-3. 48. Cheng, E.H., et al., BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell, 2001. 8(3): p. 705-11. 49. Zong, W.X., et al., BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev, 2001. 15(12): p. 1481-6. 50. Theodorakis, P., E. Lomonosova, and G. Chinnadurai, Critical requirement of BAX for manifestation of apoptosis induced by multiple stimuli in human epithelial cancer cells. Cancer Res, 2002. 62(12): p. 3373-6. 51. Gillissen, B., et al., Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO J, 2003. 22(14): p. 3580-90. 52. Gillissen, B., et al., Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. J Cell Biol, 2007. 179(4): p. 701-15. 53. Chinnadurai, G., S. Vijayalingam, and R. Rashmi, BIK, the founding member of the BH3-only family proteins: mechanisms of cell death and role in cancer and pathogenic processes. Oncogene, 2008. 27 Suppl 1: p. S20-9. 54. Real, P.J., et al., Transcriptional activation of the proapoptotic bik gene by E2F proteins in cancer cells. FEBS Lett, 2006. 580(25): p. 5905-9. 55. Subramanian, T., et al., Evidence for involvement of BH3-only proapoptotic members in adenovirus-induced apoptosis. J Virol, 2007. 81(19): p. 10486-95. 56. Hur, J., et al., Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein. Cancer Res, 2006. 66(20): p. 10153-61. 57. Spender, L.C., et al., TGF-beta induces apoptosis in human B cells by transcriptional regulation of BIK and BCL-XL. Cell Death Differ, 2009. 16(4): p. 593-602. 58. Sturm, I., et al., Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ, 2006. 13(4): p. 619-27. 59. Bredel, M., et al., High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res, 2005. 65(10): p. 4088-96. 60. Castells, A., et al., Mapping of a target region of allelic loss to a 0.5-cM interval on chromosome 22q13 in human colorectal cancer. Gastroenterology, 1999. 117(4): p. 831-7. 61. Reis, P.P., et al., Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer. Oncogene, 2002. 21(42): p. 6480-7. 62. Arena, V., et al., Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes Cancer, 2003. 38(1): p. 91-6. 63. Happo, L., et al., Neither loss of Bik alone, nor combined loss of Bik and Noxa, accelerate murine lymphoma development or render lymphoma cells resistant to DNA damaging drugs. Cell Death Dis, 2012. 3: p. e306. 64. Hur, J., et al., The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2351-6. 65. Fernandez, P.M., et al., Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat, 2000. 59(1): p. 15-26. 66. Fu, Y. and A.S. Lee, Glucose regulated proteins in cancer progression, drug resistance and immunotherapy. Cancer Biol Ther, 2006. 5(7): p. 741-4. 67. Lee, E., et al., GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res, 2006. 66(16): p. 7849-53. 68. Fu, Y., J. Li, and A.S. Lee, GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res, 2007. 67(8): p. 3734-40. 69. Zhou, H., et al., Novel mechanism of anti-apoptotic function of 78-kDa glucose-regulated protein (GRP78): endocrine resistance factor in breast cancer, through release of B-cell lymphoma 2 (BCL-2) from BCL-2-interacting killer (BIK). J Biol Chem, 2011. 286(29): p. 25687-96. 70. Ciechanover, A. and A.L. Schwartz, The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A, 1998. 95(6): p. 2727-30. 71. Cadwell, K. and L. Coscoy, Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science, 2005. 309(5731): p. 127-30. 72. Peng, J., et al., A proteomics approach to understanding protein ubiquitination. Nat Biotechnol, 2003. 21(8): p. 921-6. 73. Komander, D. and M. Rape, The ubiquitin code. Annu Rev Biochem, 2012. 81: p. 203-29. 74. Xu, P., et al., Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009. 137(1): p. 133-45. 75. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20. 76. Deshaies, R.J. and C.A. Joazeiro, RING domain E3 ubiquitin ligases. Annu Rev Biochem, 2009. 78: p. 399-434. 77. Sarikas, A., T. Hartmann, and Z.Q. Pan, The cullin protein family. Genome Biol, 2011. 12(4): p. 220. 78. Andresen, C.A., et al., Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 2014. 289(4): p. 2043-54. 79. Kim, Y.K., et al., Structural basis of intersubunit recognition in elongin BC-cullin 5-SOCS box ubiquitin-protein ligase complexes. Acta Crystallogr D Biol Crystallogr, 2013. 69(Pt 8): p. 1587-97. 80. Diks, S.H., et al., The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 2006. 174(4): p. 581-92. 81. Tee, J.M., et al., asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev, 2012. 21(17): p. 3091-103. 82. Maurel, M., et al., Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol, 2015. 33: p. 57-66. 83. Kim, I., W. Xu, and J.C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2008. 7(12): p. 1013-30. 84. Walter, P. and D. Ron, The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011. 334(6059): p. 1081-6. 85. Yoshida, H., et al., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 2001. 107(7): p. 881-91. 86. Korennykh, A.V., et al., The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009. 457(7230): p. 687-93. 87. Ali, M.M., et al., Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J, 2011. 30(5): p. 894-905. 88. Lee, A.H., N.N. Iwakoshi, and L.H. Glimcher, XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol, 2003. 23(21): p. 7448-59. 89. Yoshida, H., et al., A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell, 2003. 4(2): p. 265-71. 90. Imagawa, Y., et al., RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett, 2008. 582(5): p. 656-60. 91. Harding, H.P., Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-4. 92. Harding, H.P., et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell, 2000. 6(5): p. 1099-108. 93. Scheuner, D., et al., Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell, 2001. 7(6): p. 1165-76. 94. Harding, H.P., et al., An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003. 11(3): p. 619-33. 95. Luo, S., et al., Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem, 2003. 278(39): p. 37375-85. 96. Ma, Y., et al., Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol, 2002. 318(5): p. 1351-65. 97. Haze, K., et al., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell, 1999. 10(11): p. 3787-99. 98. Shen, J., et al., ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell, 2002. 3(1): p. 99-111. 99. Shoulders, M.D., et al., Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep, 2013. 3(4): p. 1279-92. 100. Reimertz, C., et al., Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol, 2003. 162(4): p. 587-97. 101. Nishitoh, H., et al., ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev, 2002. 16(11): p. 1345-55. 102. Morishima, N., K. Nakanishi, and A. Nakano, Activating transcription factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. J Biol Chem, 2011. 286(40): p. 35227-35. 103. Hetz, C., et al., Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science, 2006. 312(5773): p. 572-6. 104. Rodriguez, D.A., et al., BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1alpha. EMBO J, 2012. 31(10): p. 2322-35. 105. Dremina, E.S., et al., Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J, 2004. 383(Pt 2): p. 361-70. 106. Scorrano, L., et al., BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003. 300(5616): p. 135-9. 107. Jones, R.G., et al., The proapoptotic factors Bax and Bak regulate T Cell proliferation through control of endoplasmic reticulum Ca(2+) homeostasis. Immunity, 2007. 27(2): p. 268-80. 108. Carney, J.P., et al., The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell, 1998. 93(3): p. 477-86. 109. Lee, J.H. and T.T. Paull, Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 2004. 304(5667): p. 93-6. 110. Lee, J.H. and T.T. Paull, ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 2005. 308(5721): p. 551-4. 111. Roos, W.P. and B. Kaina, DNA damage-induced cell death by apoptosis. Trends Mol Med, 2006. 12(9): p. 440-50. 112. Cortez, D., et al., ATR and ATRIP: partners in checkpoint signaling. Science, 2001. 294(5547): p. 1713-6. 113. Dart, D.A., et al., Recruitment of the cell cycle checkpoint kinase ATR to chromatin during S-phase. J Biol Chem, 2004. 279(16): p. 16433-40. 114. Shiotani, B. and L. Zou, ATR signaling at a glance. J Cell Sci, 2009. 122(Pt 3): p. 301-4. 115. Tibbetts, R.S., et al., A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev, 1999. 13(2): p. 152-7. 116. Guo, Z., et al., Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev, 2000. 14(21): p. 2745-56. 117. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25. 118. Melino, G., et al., p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem, 2004. 279(9): p. 8076-83. 119. Urist, M., et al., p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev, 2004. 18(24): p. 3041-54. 120. Flinterman, M., et al., E1A activates transcription of p73 and Noxa to induce apoptosis. J Biol Chem, 2005. 280(7): p. 5945-59. 121. Prieto-Remon, I., et al., BIK (NBK) is a mediator of the sensitivity of Fanconi anaemia group C lymphoblastoid cell lines to interstrand DNA cross-linking agents. Biochem J, 2012. 448(1): p. 153-63. 122. Yuan, W.C., et al., A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell, 2011. 20(2): p. 214-28. 123. Lee, Y.R., et al., The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J, 2010. 29(10): p. 1748-61. 124. Zhu, H., et al., Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene, 2005. 24(31): p. 4993-9. 125. Germain, M., J.P. Mathai, and G.C. Shore, BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J Biol Chem, 2002. 277(20): p. 18053-60. 126. Mathai, J.P., M. Germain, and G.C. Shore, BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem, 2005. 280(25): p. 23829-36. 127. Fischer, M., L. Steiner, and K. Engeland, The transcription factor p53: not a repressor, solely an activator. Cell Cycle, 2014. 13(19): p. 3037-58. 128. Li, C., et al., Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther, 2008. 7(6): p. 1647-55. 129. Yoshida, H., ER stress and diseases. FEBS J, 2007. 274(3): p. 630-58. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76455 | - |
dc.description.abstract | BIK (Bcl-2-interacting killer)屬Bcl-2蛋白質家族中之BH3-only成員,且因其促細胞凋亡之性質而被認為是腫瘤抑制基因。然而,細胞內BIK蛋白表現量之調控機制至今尚未被完全了解。基於過表現ASB11 (ankyrin and SOCS box protein 11)可促進BIK泛素化之事實,本實驗室先前已鑑別出ASB11蛋白可能作為負責介導BIK泛素化之受質辨識單元(substrate recognition subunit, SRS),參與在Cullin5 E3接合酶複合體(Cul5 E3 ligases complex)所催化之泛素化反應中。而在本次研究中,我們藉Co-IP以及in vitro binding assay驗證了ASB11與BIK之間所存在的直接性結合,並於in vitro ubiquitination assay中證明重組之ElonginBC-Cul5-ROC2-ASB11複合體具有催化BIK泛素化之酵素活性。進一步的實驗則顯示,過表現ASB11將會導致293T細胞株內之BIK蛋白含量下降;且此現象可藉由施以蛋白酶體抑制劑MG132所排除,指出ASB11可促使BIK蛋白經泛素-蛋白酶體系統(ubiquitin-proteasome system, UPS)被降解。與此相應,過表現ASB11亦可部分性地抑制由DNA損害藥物(DNA damage agents)處理所引發之細胞凋亡,顯示ASB11具有促進細胞存活之能力。另一方面,HCT116細胞株中ASB11之mRNA表現量被發現會在經過cisplatin, doxorubicin以及5-fu等DNA損害藥物之處理後經由p53路徑被負調控,顯示ASB11可能參與在DNA損害反應(DNA damage response)之中。此外,tunicamycin及thapsigargin等內質網壓力誘導物(ER-stress inducers)之處理則被發現可以透過XBP1路徑提高293T細胞株中ASB11之mRNA表現量,並且降低BIK蛋白之表現量;此結果暗示ASB11可能參與在不正常蛋白質摺疊反應(unfolded protein response, UPR)的適應性反應(adaptive response)之中。綜合以上結果,本研究發現了Cul5-ASB11所介導之BIK泛素化機制;並且指出此機制在抑制DNA損害藥物所引發之細胞凋亡,以及在針對內質網壓力之適應性反應中所扮演的角色。 | zh_TW |
dc.description.abstract | BIK (Bcl-2-interacting killer) is a BH3-only Bcl-2 family protein which has been considered as a tumor suppressor based on its pro-apoptotic function. However, the mechanism that regulates BIK protein level has not been completely understood. Previous studies in our laboratory identified ASB11 (ankyrin and SOCS box protein 11) as a candidate of the substrate recognition subunit (SRS) that recruits BIK to Cullin5 (Cul5) E3 ligases complex. In this study, we first examined the direct relationship between BIK and ASB11. Through co-IP and in vitro binding assay, the interaction between ASB11 and BIK was demonstrated. Furthermore, in vitro ubiquitination assay revealed the capacity of reconstituted ElonginBC-Cul5-ROC2-ASB11 complex to promote BIK polyubiquitination. Accordingly, overexpression of ASB11 in 293T cells decreases BIK protein abundance. Together with the finding that MG132 treatment blocks BIK downregulation induced by ASB11 overexpression, our data indicate that ASB11 promotes BIK degradation through ubiquitin-proteasome system (UPS). Consistent with the downregulation of pro-apoptotic BIK, ASB11 elicits a pro-survival effect to inhibit apoptosis induced by DNA damage agents. Furthermore, we show that DNA damage agents induced downregulation of ASB11 mRNA in a p53-dependent manner. On the contrary, the ER-stress inducers tunicamycin and thapsigargin unregulated ASB11 mRNA expression and reduced BIK protein abundance in 293T cells through a XBP1 dependent pathway. Together, this study identifies a BIK degradation pathway mediated by Cul5-ASB11 ubiquitin ligase complex and implies a role of this pathway in both antagonizing p53-dependent apoptosis in response to DNA damage agents and the adaptive response to ER stress. | en |
dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:36Z (GMT). No. of bitstreams: 1 ntu-105-R03B46005-1.pdf: 10713199 bytes, checksum: f0fe4ff2c15100185020b8d2bd7d338d (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II I. Introduction 1 1. Apoptosis 1 2. Bcl-2 protein family 3 2.1. BIK 5 3. The Ubiquitin-Proteasome System 7 3.1. The E3 ubiquitin ligases 8 3.2. The Cullin-RING E3 ligases 9 3.3. The ASB11 9 4. Endoplasmic reticulum stress 10 4.1. ER stress in the live/death decision 12 4.2. Bcl-2 family proteins in UPR regulation 13 5. DNA damage response 14 5.1. Apoptosis in DNA-damage response 14 II. Materials and Methods 16 III. Results 22 IV. Discussion 28 V. Reference 32 VI. Figures 40 | |
dc.language.iso | en | |
dc.title | ASB11在BIK泛素化與細胞凋亡調控中所扮演的角色 | zh_TW |
dc.title | The role of ASB11 in BIK ubiquitination and apoptosis regulation | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 冀宏源(Hung-Yuan, Chi),謝小燕(Sheau-Yann, Shieh) | |
dc.subject.keyword | BIK,ASB11,細胞凋亡,泛素-蛋白?體系統,DNA損害,內質網壓力, | zh_TW |
dc.subject.keyword | BIK,ASB11,apoptosis,UPS,DNA damage,ER stress, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU201601929 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-05 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
dc.date.embargo-lift | 2021-10-14 | - |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-R03B46005-1.pdf | 10.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。