請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76431
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉啟德(Chi-Te Liu) | |
dc.contributor.author | Hui-Wen Ooi | en |
dc.contributor.author | 黃輝文 | zh_TW |
dc.date.accessioned | 2021-07-09T15:52:15Z | - |
dc.date.available | 2022-10-03 | |
dc.date.copyright | 2017-10-03 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-09-12 | |
dc.identifier.citation | Aguilar, C., et al. (2007). 'Thinking about Bacillus subtilis as a multicellular
organism.' Current Opinion in Microbiology 10(6): 638-643. Akpa, E., et al. (2001). 'Influence of culture conditions on lipopeptide production by Bacillus subtilis.' Applied Biochemistry and Biotechnology 91(1): 551-561. Aktar, W., et al. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology. 2: 1-12. Al-Ajlani, M. M., et al. (2007). 'Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium.' Microbial Cell Factories 6(1): 17. Aleti, G., et al. (2016). 'Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus.' Environmental Microbiology 18(8): 2634-2645. Arnaouteli, S., et al. (2016). 'Just in case it rains: building a hydrophobic biofilm the Bacillus subtilis way.' Current Opinion in Microbiology 34: 7-12. Arrebola, E., et al. (2010). 'Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus.' Biological Control 53(1): 122-128. Asari, S., et al. (2016). 'Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.' FEMS Microbiology Ecology 92(6). Bais, H. P., et al. (2004). 'Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.' Plant Physiology 134(1): 307-319. Baker, B., et al. (1997). 'Signaling in plant-microbe interactions.' Science 276(5313): 726-733. Ben Ayed, H., et al. (2017). 'Identification and natural functions of cyclic lipopeptides from Bacillus amyloliquefaciens An6.' Engineering in Life Sciences 17(5): 536-544. Blacutt, A., et al. (2016). 'Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides.' Molecular Plant-Microbe Interactions 29(9): 713-723. Bonmatin, J.-M., et al. (2003). 'Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents.' Combinatorial Chemistry & High Throughput Screening 6(6): 541-556. Cawoy, H., et al. (2014). 'Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production.' Molecular Plant-Microbe Interactions 27(2): 87-100. Chen, H., et al. (2008). 'Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis.' Letters in Applied Microbiology 47(3): 180-186. Chen, L.-C., et al. (2004). 'Test of rice varieties and strains resistant to rice blast in blast nurseries during 1990-2002.' Journal of Agricultural Research of China(53): 269-283. Chen, W.-J., et al. (2016). 'Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis.' Scientific Reports 6: 32950. Chen, X. H., et al. (2007). 'Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42.' Nature Biotechnology 25(9): 1007. Chen, Y., et al. (2013). 'Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation.' Environmental Microbiology 15(3): 848-864. Chowdhury, S. P., et al. (2015). 'Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review.' Frontiers in Microbiology 6: 780. Chuma, I., et al. (2011). 'Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species.' PLOS Pathogens 7(7): e1002147. Cook, R. J. (1993). 'Making greater use of introduced microorganisms for biological control of plant pathogens.' Annual Review of Phytopathology 31(1): 53-80. Debois, D., et al. (2014). 'Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging.' Analytical Chemistry 86(9): 4431-4438. Drążkiewicz, M., et al. (2004). 'Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana.' Biometals 17(4): 379-387. Dubey, R., et al. (2011). 'Isolation, production, purification, assay and characterization of fibrinolytic enzymes (Nattokinase, Streptokinase and Urokinase) from bacterial sources.' African Journal of Biotechnology 10(8): 1408-1420. Eden, P. A., et al. (1991). 'Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA.' International Journal of Systematic and Evolutionary Microbiology 41(2): 324-325. Finking, R. and M. A. Marahiel (2004). 'Biosynthesis of nonribosomal peptides.' Annual Review of Microbiology 58(1): 453-488. Francis, I., et al. (2010). 'The Gram-positive side of plant–microbe interactions.' Environmental Microbiology 12(1): 1-12. Fujita, M., et al. (1995). 'Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat.' Biological and Pharmaceutical Bulletin 18(10): 1387-1391. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, [London]: Information Retrieval Ltd., c1979-c2000. Hasegawa, M., et al. (1985). 'Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.' Journal of Molecular Evolution 22(2): 160-174. Hayashi, K., et al. (2005). 'The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis.' Journal of Bacteriology 187(19): 6659-6667. Heerklotz, H., et al. (2004). 'Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR.' The Journal of Physical Chemistry B 108(15): 4909-4915. Hsu, R.-L., et al. (2008). 'Amyloid-degrading ability of nattokinase from Bacillus subtilis natto.' Journal of Agricultural and Food Chemistry 57(2): 503-508. Huang, C.-N., et al. (2016). 'Characterization and evaluation of Bacillus amyloliquefaciens strain WF02 regarding its biocontrol activities and genetic responses against bacterial wilt in two different resistant tomato cultivars.' World Journal of Microbiology and Biotechnology 32(11): 183. Idris, E. E., et al. (2007). 'Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42.' Molecular Plant-Microbe Interactions 20(6): 619-626. Idriss, E. E., et al. (2002). 'Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effecta.' Microbiology 148(7): 2097-2109. Jourdan, E., et al. (2009). 'Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis.' Molecular Plant-Microbe Interactions 22(4): 456-468. Kai, M., et al. (2009). 'Bacterial volatiles and their action potential.' Applied Microbiology and Biotechnology 81(6): 1001-1012. Kim, P., et al. (2004). 'Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26.' Journal of Applied Microbiology 97(5): 942-949. Kobayashi, K. (2007). 'Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes.' Journal of Bacteriology 189(13): 4920-4931. Kobayashi, K. (2015). 'Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.' Environmental Microbiology 17(4): 1365-1376. Kosma, D. K., et al. (2009). 'The impact of water deficiency on leaf cuticle lipids of Arabidopsis.' Plant Physiology 151(4): 1918-1929. Koumoutsi, A., et al. (2004). 'Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42.' Journal of Bacteriology 186(4): 1084-1096. Kulimushi, P. Z., et al. (2017). 'Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis.' Frontiers in Microbiology 8. Kumar, S., et al. (2016). 'MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.' Molecular Biology and Evolution 33(7): 1870-1874. Leelasuphakul, W., et al. (2006). 'Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight.' Enzyme and Microbial Technology 38(7): 990-997. Liao, J.-H., et al. (2016). 'Clarification of the antagonistic effect of the lipopeptides produced by Bacillus amyloliquefaciens BPD1 against Pyricularia oryzae via In Situ MALDI-TOF IMS Analysis.' Molecules 21(12): 1670. Lombardía, E., et al. (2006). 'A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis.' Journal of Bacteriology 188(12): 4442-4452. Lopez, D., et al. (2009). 'Generation of multiple cell types in Bacillus subtilis.' FEMS Microbiology Reviews 33(1): 152-163. Luo, C., et al. (2015). 'Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.' Applied Microbiology and Biotechnology 99(4): 1897-1910. Luo, Y., et al. (2013). 'Identification and characterization of an anti-fungi Fusarium oxysporum f. sp. cucumerium protease from the Bacillus subtilis strain N7.' Journal of Microbiology 51(3): 359-366. Mäder, U., et al. (2002). 'Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics.' Molecular Genetics and Genomics 268(4): 455-467. Meldau, D. G., et al. (2013). 'Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition.' The Plant Cell 25(7): 2731-2747. Molinatto, G., et al. (2017). 'Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production.' Frontiers in Microbiology 8: 17. Ongena, M. and P. Jacques (2008). 'Bacillus lipopeptides: versatile weapons for plant disease biocontrol.' Trends in Microbiology 16(3): 115-125. Oslizlo, A., et al. (2015). 'Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane.' Microbial Biotechnology 8(3): 527-540. Oyebanji, O., et al. (2009). 'Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds.' African Journal of Biotechnology 8(20). Patrick, J. E. and D. B. Kearns (2009). 'Laboratory strains of Bacillus subtilis do not exhibit swarming motility.' Journal of Bacteriology 191(22): 7129-7133. Pérez-García, A., et al. (2011). 'Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture.' Current Opinion in Biotechnology 22(2): 187-193. Peypoux, F., et al. (1999). 'Recent trends in the biochemistry of surfactin.' Applied Microbiology and Biotechnology 51(5): 553-563. Raaijmakers, J. M., et al. (2010). 'Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics.' FEMS Microbiology Reviews 34(6): 1037-1062. Rahman, A., et al. (2014). 'Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.' Phytopathology 104(6): 614-623. Rahman, A., et al. (2015). 'Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens.' Molecular Plant Pathology 16(6): 546-558. Romero, D., et al. (2007). 'The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.' Molecular Plant-Microbe Interactions 20(4): 430-440. Rooney, A. P., et al. (2009). 'Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov.' International Journal of Systematic and Evolutionary Microbiology 59(10): 2429-2436. Ryu, C.-M., et al. (2003). 'Bacterial volatiles promote growth in Arabidopsis.' Proceedings of the National Academy of Sciences 100(8): 4927-4932. Ryu, C.-M., et al. (2004). 'Bacterial volatiles induce systemic resistance in Arabidopsis.' Plant Physiology 134(3): 1017-1026. Schallmey, M., et al. (2004). 'Developments in the use of Bacillus species for industrial production.' Canadian Journal of Microbiology 50(1): 1-17. Shan, H., et al. (2013). 'Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79.' Crop Protection 44: 29-37. Shao, J., et al. (2015). 'Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9.' Biology and Fertility of Soils 51(3): 321-330. Shen, W.-C., et al. (1999). 'Isolation of pheromone precursor genes of Magnaporthe grisea.' Fungal Genetics and Biology 27(2-3): 253-263. Shih, C.-J., et al. (2014). 'Bringing microbial interactions to light using imaging mass spectrometry.' Natural Product Reports 31(6): 739-755. Skamnioti, P. and S. J. Gurr (2009). 'Against the grain: safeguarding rice from rice blast disease.' Trends in Biotechnology 27(3): 141-150. Spence, C., et al. (2014). 'Natural rice rhizospheric microbes suppress rice blast infections.' BMC Plant Biology 14(1): 130. Stein, T. (2005). 'Bacillus subtilis antibiotics: structures, syntheses and specific functions.' Molecular Microbiology 56(4): 845-857. Sumi, H., et al. (1987). 'A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet.' Cellular and Molecular Life Sciences 43(10): 1110-1111. Tahir, H. A. S., et al. (2017). 'Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt.' Scientific Reports 7: 40481. Tamura, K. and M. Nei (1993). 'Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.' Molecular Biology and Evolution 10(3): 512-526. Tendulkar, S., et al. (2007). 'Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea.' Journal of Applied Microbiology 103(6): 2331-2339. Thompson, R. D. and J. Verdier (2012). Networks of seed storage protein regulation in cereals and legumes at the dawn of the omics era. Seed Development: OMICS technologies toward improvement of seed quality and crop yield: OMICS in seed biology. G. K. Agrawal and R. Rakwal. Dordrecht, Springer Netherlands: 187-210. Tokpah, D. P., et al. (2016). 'An assessment system for screening effective bacteria as biological control agents against Magnaporthe grisea on rice.' Biological Control 103: 21-29. Tsuge, K., et al. (1999). 'The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production.' Antimicrobial Agents and Chemotherapy 43(9): 2183-2192. Veening, J.-W., et al. (2006). 'Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis.' Journal of Bacteriology 188(8): 3099-3109. Wang, L.-T., et al. (2007). 'Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group.' International Journal of Systematic and Evolutionary Microbiology 57(8): 1846-1850. Wilson, R. A. and N. J. Talbot (2009). 'Under pressure: investigating the biology of plant infection by Magnaporthe oryzae.' Nature Reviews Microbiology 7(3): 185-195. Wise, C., et al. (2012). 'Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12.' Journal of Chemical Ecology 38(12): 1521-1527. Wu, L., et al. (2015). 'Novel routes for improving biocontrol activity of Bacillus based bioinoculants.' Frontiers in Microbiology 6. Xie, S.-S., et al. (2014). 'Plant growth promotion by spermidine-producing Bacillus subtilis OKB105.' Molecular Plant-Microbe Interactions 27(7): 655-663. Yamamoto, S. and S. Harayama (1995). 'PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains.' Applied and Environmental Microbiology 61(3): 1104-1109. Zeigler, R., et al. (1994). 'Lineage exclusion: a proposal for linking blast population analysis to rice breeding.' The Rice Blast Disease, John Hopkins Press, Baltimore, Maryland, USA: 267-291. Zeriouh, H., et al. (2014). 'Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.' Environmental Microbiology 16(7): 2196-2211. Zhang, H., et al. (2007). 'Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis.' Planta 226(4): 839. Zhang, H., et al. (2009). 'MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence.' FEMS Microbiology Letters 293(2): 160-169. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76431 | - |
dc.description.abstract | 納豆菌因可分泌納豆激酶而被廣泛應用為人類食用益生菌。納豆菌屬枯草桿菌群,具分泌多種抗生物質的能力,因此具有作為植物保護劑的潛力。在本研究中,我們使用一株具分泌多量納豆激酶的納豆菌K1菌株,評估其生物防治以及促進植物生長的潛力。我們根據其在LB培養基上的菌落型態,挑選出四株彼此具有差異性的納豆菌,分別命名為WA, WB, WC及K1。根據16S rRNA與gyrB序列繪製的親緣演化樹以及碳源代謝活性的結果判斷,四種菌落皆屬相同菌株。在對峙培養實驗發現BsK1相較於其他三種株菌落具有更佳的抗稻熱病真菌(MoGuy11)之能力。此外,我們使用枯草桿菌標準菌株Bs168及一株台灣本土商用枯草桿菌菌株BY1336作為對照比較。BsK1及BY1336處理組相較於Bs168能更為有效地抑制稻熱病菌絲生長,而且觀察到菌絲會有異常膨大現象。我們使用對葉稻熱病具不同抗性的水稻品種,包括感病等級的台梗9號以及極感等級的台農67號來評估上述菌株的抗病能力。 若菌液是施用在根部時,BsK1或是BY1336皆可降低台農67號的葉稻熱病罹病指數; 若施用在葉面則只有Bs168具抗病效果。此外我們發現BsK1及Bs168僅有活細胞才具有抑制稻熱病菌絲的作用,而BY1336 不論是活細胞或是分子量大於3kDa的上清液皆具有抑制能力。利用影像質譜分析上述三株菌株所分泌的酯肽類抗生素發現,BY1336具分泌 iturins, surfactins 以及fengycins的能力,Bs168則完全偵測不到這些抗生物質,而BsK1只能偵測到surfactins。我們發現BsK1與稻熱病菌共同培養下所生成的surfactins的量較單獨培養多,因此推斷BsK1會受到病原菌的誘導而生合成抗生物質。另外,我們也比較了三株菌促進植物生長的能力。三株菌培養在LB時所釋放的揮發性氣體可促進阿拉伯芥及菸草小苗的生長。然而若直接將上述菌株施加到小苗根部,BY1336反而會抑制菸草及阿拉伯芥的生長,BsK1則不影響菸草生長。綜合上述結果, 因BsK1具有與商用菌株相似的抗病及促進植物生長能力,且對植物傷害更小,研判具有發展成為植保製劑的潛力。 | zh_TW |
dc.description.abstract | Bacillus subtilis natto has been regarded as a kind of human probiotics due to its production of fibrinolytic enzyme (nattokinase). In this study, an elite Bacillus subtilis natto strain K1 with high productivity of nattokinase was evaluated for its biocontrol and plant growth-promoting properties. This bacterium displayed at least four distinct colony morphologies, and designated as WA, WB, WC and K1, respectively. Based on 16S rRNA/ gyrB constructed phylogenetic trees and carbon utilization traits, these four kinds of colonies belong to the same strain. However, in dual culture assay, BsK1 showed highest inhibition on the mycelia growth of a rice blast fungus, Magnaporthe oryzae Guy11 (MoGuy11). In comparison with a commercial strain (Bacillus sp. strain Y1336, BY1336) and a model strain of Bacillus subtilis (B. subtilis 168, Bs168), BsK1 displayed comparable biocontrol activity as that of BY1336. In dual culture plate assay, both BY1336 and BsK1 caused swollen hyphae and growth inhibition on MoGuy11 mycelia. Inoculation of either BsK1 or BY1336 on roots of rice cultivar TNG67 decreased the disease incidence of leaf blast. In contrast, leaf spray of these strains on cultivar TNG67 did not display any biocontrol ability. I found the broth filtrate of BY1336 could inhibit the growth of MoGuy11, however, that of BsK1 could not. Imaging mass analysis was conducted to confirm the synthesis of lipopeptide antibiotics. BY1336 could produce three kinds of lipopeptides (surfactins, fengycins, and iturins) in the presence or absence of MoGuy11. In contrast, BsK1 could only synthesize surfactins in the presence of MoGuy11. It suggests that the antibiotics of BsK1 are only synthesized in response to its antagonist. I also found both BsK1 and BY1336 were able to promote the growth of Arabidopsis thaliana Col-0 and Nicotiana tabacum W38 through volatile compounds emission when they were grown in Luria Bertani agar (LBA). In direct inoculation of BY1336 and BsK1 on both seedlings, growth of AtCol-0 were inhibited by both strains, but only BY1336 suppressed the growth of NtbW38. Taken together, BsK1 just like the commercial strain BY1336, has the potential to serve as elite biological control agent as well as plant growth stimulator. | en |
dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:15Z (GMT). No. of bitstreams: 1 ntu-106-R04642011-1.pdf: 18583276 bytes, checksum: ce2a46f761fe155f18ecaea26a878c04 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract V Contents VII List of Figures VIII List of Tables IX Introduction 1 Materials and Methods 8 Bacteria isolation and phenotype identification 8 Genotype identification and phylogenetic analyses 9 Oatmeal agar (OMA) preparation 10 Culture condition for fungi and collection of spores 11 In vitro antagonistic assay 12 Spore germination assay 13 In vivo biocontrol activity of Bacillus strains on rice seedlings 14 Identification of lipopeptides using imaging mass analysis 16 In vitro plant growth promotion assay 17 Statistical analysis 18 Results 19 Isolation of Bacillus subtilis natto strains 19 Identification and characterization of isolates 19 In vitro antagonistic assay against Magnaporthe oryzae Guy11 21 Spore germination assay 26 In vivo biocontrol activity of Bacillus strains 27 Mechanism of B. subtilis K1 inhibiting rice blast fungus 28 Imaging mass analyses of lipopeptides secretion 32 Plant growth promotion of Bacillus strains through volatile emission 33 Effects of inoculating dose of Bacillus strains on plant growth promotion 33 Effects of different culture media for Bacillus strains on plant growth 35 Effects of dual culture on plant growth 36 Effects of direct inoculation of Bacillus strains on seedlings 37 Discussion 40 Isolation, identification and characterization of isolates 40 Biocontrol ability of Bacillus strains 42 Mechanism of BsK1 in suppressing MoGuy11 44 Plant growth promotion by BsK1 46 Conclusions and future prospects 49 References 51 | |
dc.language.iso | zh-TW | |
dc.title | 評估納豆菌K1菌株抑制稻熱病以及促進植物生長之潛力 | zh_TW |
dc.title | Evaluate the potential of Bacillus subtilis natto K1 for biocontrol activity against rice blast disease as well as for plant growth-promoting traits | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李昆達(Kung-Ta Lee) | |
dc.contributor.oralexamcommittee | 劉?睿(Je-Ruei Liu),沈偉強(Wei-Chiang Shen),楊玉良(Yu-Liang Yang) | |
dc.subject.keyword | 納豆菌,枯草桿菌,稻熱病菌,揮發性氣體,表面活性素,阿拉伯芥,菸草, | zh_TW |
dc.subject.keyword | Bacillus subtilis natto,Magnaporthe oryzae Guy11,Volatile,Surfactin,Arabidopsis thaliana Col-0,Nicotiana tabacum W38, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201704205 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-09-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
dc.date.embargo-lift | 2022-10-03 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R04642011-1.pdf | 18.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。