請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7642完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡植慶 | zh_TW |
| dc.contributor.advisor | Jyr-Ching Hu | en |
| dc.contributor.author | 董英宏 | zh_TW |
| dc.contributor.author | Ying-Hung Tung | en |
| dc.date.accessioned | 2021-05-19T17:48:48Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2018-01-04 | - |
| dc.date.issued | 2017 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007), ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112(B9), doi: 10.1029/2007JB004949.
Angelier, J., J.-C. Lee, H.-T. Chu, C.-Y. Lu, M. Fournier, J.-C. Hu, N.-T. Lin, B. Deffontaines, B. Delcaillau, and O. Lacombe (1995), Crustal extension in an active orogen: Taiwan, ACT Int. Conf., Extended. Abstr. Geol. Soc. China, Taipei, Taiwan Cardinali, M., P. Reichenbach, F. Guzzetti, F. Ardizzone, G. Antonini, M. Galli, M. Cacciano, M. Castellani, and P. Salvati (2002), A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy, Nat. Hazard. Earth Sys., 2(1/2), 57-72. Chang, C.-P., J.-Y. Yen, A. Hooper, F.-M. Chou, Y.-A. Chen, C.-S. Hou, W.-C. Hung, and M.-S. Lin (2010), Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques, Terr. Atmos. Ocean. Sci., 21(3), doi:10.3319/TAO.2009.11.20.01(TH). Chang, K. J., and A. Taboada (2009), Discrete element simulation of the Jiufengershan rock‐and‐soil avalanche triggered by the 1999 Chi‐Chi earthquake, Taiwan, J. Geophysis. Res., 114(F3), doi:10.1029/2008JF001075. Chang, L.-S. (1962), A biostratigraphic study of Oligocene in northern Taiwan based on smaller foraminifera, Proc. Geol. Soc. China, 5, 47-64. Chang, L.-S. (1963), A biostratigraphic study of the so-called Hori Slate in central Taiwan based on smaller Foraminifera, Proc. Geol. Soc. China, 6, 3-17. Chen, C.-H. (1979), Geology of the East-West Cross-Island Highway in Central Taiwan, Mem. Geol. Soc. China, 3, 219-236. Chen, C. W., and H. A. Zebker (2001), Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, J. Opt. Soc. Am. A., 18(2), 338-351, doi.: 10.1364/JOSAA.18.000338. Chen, C. W., and H. A. Zebker (2002), Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE T. Geosci. Remote., 40(8), 1709-1719. Chigira, M. (1992), Long-term gravitational deformation of rocks by mass rock creep, Eng. Geol., 32(3), 157-184, doi:10.1016/0013-7952(92)90043-X. Chigira, M., W.-N. Wang, T. Furuya, and T. Kamai (2003), Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan, Eng. Geol., 68(3), 259-273, doi:10.1016/S0013-7952(02)00232-6. Cundall, P. A. (1971), A computer model for simulating progressive, large scale movement in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech., 2(8), Nancy, France. Curlander, J. C., and R. N. McDonough (1991), Synthetic Aperture Radar: Systems and Signal Processing, 672 pp., John Wiley & Sons New York, USA. Di Toro, G., R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto (2011), Fault lubrication during earthquakes, Nature, 471(7339), 494-498, doi:10.1038/nature09838. Ferretti, A., C. Prati, and F. Rocca (2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE T. Geosci. Remote., 38(5), 2202-2212, doi: 10.1109/36.868878 Gabriel, A. K., R. M. Goldstein, and H. A. Zebker (1989), Mapping small elevation changes over large areas: differential radar interferometry, J. Geophys. Res., 94(B7), 9183-9191, doi:10.1029/JB094iB07p09183. Geertsema, M., J. J. Clague, J. W. Schwab, and S. G. Evans (2006), An overview of recent large catastrophic landslides in northern British Columbia, Canada, Eng. Geol., 83(1), 120-143. Ghaboussi, J., and R. Barbosa (1990), Three‐dimensional discrete element method for granular materials, Int. J. Number. Anal. Met., 14(7), 451-472. Graham, L. C. (1974), Synthetic interferometer radar for topographic mapping, Proc. IEEE, 62(6), 763-768. Ho, C.-S. (1986), A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125(1-3), 1-16, doi:10.1016/0040-1951(86)90004-1. Hooper, A. (2006), Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation, Ph.D. thesis, 124 pp., Standford University, California, USA. Hooper, A. (2008), A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35(16), doi: 10.1029/2008GL034654. Hooper, A. (2010), A statistical-cost approach to unwrapping the phase of InSAR time series, Proceeding of international workshop on ERS SAR interferometry, Frascati, Italy. Hooper, A., P. Segall, and H. Zebker (2007), Persistent scatterer In-SAR for crustal deformation analysis, with application to Volcán Alcedo, Galapagos, J. Geophys. Res., 112, B07407, doi: 10.1029/2006JB004763. Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett., 31(23), doi: 10.1029/2004GL021737. Hooper, A., D. Bekaert, K. Spaans, and M. Arıkan (2012), Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics, 514, 1-13, doi: 10.1016/j.tecto.2011.10.013. Hsieh, C.-S., and T.-Y. Shih (2006), Coseismic deformation of Chi-Chi earthquake as detected by differential synthetic aperture radar interferometry and GPS data, Terr. Atmos. Ocean. Sci., 17(3), 517-532. Hsieh, C.-S., T.-Y. Shih, J.-C. Hu, H. Tung, M.-H. Huang, and J. Angelier (2011), Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan, Nat. Hazards, 58(3), 1311-1332, doi:10.1007/s11069-011-9734-7. Hsu, Y.-J., R.-F. Chen, C.-W. Lin, H.-Y. Chen, and S.-B. Yu (2014), Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induced by landslides, Geology, 42(11), 991-994, doi: 10.1130/G35991.1. Huang, M. H. (2006), The case studies of the crustal deformation in Taiwan based on SAR interferometry, 185 pp, National Taiwan University, Taipei, Taiwan. Huang, M. H., J. C. Hu, C. S. Hsieh, K. E. Ching, R. J. Rau, E. Pathier, B. Fruneau, and B. Deffontaines (2006), A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation, Geophys. Res. Lett., 33(12), doi:10.1029/2005GL025613. Huang, M. H., H. Tung, E. J. Fielding, H. H. Huang, C. Liang, C. Huang, and J. C. Hu (2016), Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan, Geophys. Res. Lett., 43(14), 7459-7467, doi:10.1002/2016GL069351. International Association of Engineering Geology on Landslide (IAEG) (1990), Suggested nomenclature for landslides, Bull. Int. Assoc. Eng. Geol., 41(1), 13-16, doi:10.1007/BF02590202. Itasca Consulting Group Inc. (2008), PFC3D Theory and Background, 146 pp., Itasca Consulting Group Inc., Minnesota, USA. Jarman, D. (2006), Large rock slope failures in the Highlands of Scotland: characterisation, causes and spatial distribution, Eng. Geol., 83(1), 161-182. Jensen, J. R. (2007), Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed., 592 pp., Pearson Prentice Hall, New Jersey, USA. Kieffer, D. (1998), Rock slumping: A compound failure mode of jointed hard rock slopes, Ph.D. thesis, 408 pp., University of California, Berkeley, USA. Lillesand, T., R. W. Kiefer, and J. Chipman (2015), Remote sensing and image interpretation, 7th ed., 736 pp, John Wiley & Sons, New York, USA. Lin, A. T., and A. B. Watts (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107(B9), doi:10.1029/2001JB000669. Lo, C.-M., and Z.-Y. Feng (2014), Deformation characteristics of slate slopes associated with morphology and creep, Eng. Geol., 178, 132-154, doi:10.1016/j.enggeo.2014.06.011. Lo, C.-M., M.-L. Lin, C.-L. Tang, and J.-C. Hu (2011), A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit, Eng. Geol., 123, 22-39. Lu, C.-Y., C.-L. Tang, Y.-C. Chan, J.-C. Hu, and C.-C. Chi (2014), Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan, Eng. Geol., 183, 14-30, doi:10.1016/j.enggeo.2014.09.007. Lucas, R. M., A. L. Mitchell, A. Rosenqvist, C. Proisy, A. Melius, and C. Ticehurst (2007), The potential of L‐band SAR for quantifying mangrove characteristics and change: case studies from the tropics, Aquat. Conserv., 17(3), 245-264, doi:10.1002/aqc.833. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry, Nature, 364(6433), 138-142. Nadim, F., O. Kjekstad, P. Peduzzi, C. Herold, and C. Jaedicke (2006), Global landslide and avalanche hotspots, Landslides, 3(2), 159-173, doi:10.1007/s10346-006-0036-1. Nemčok, A., J. Pašek, and J. Rybář (1972), Classification of landslides and other mass movements, Rock Mech., 4(2), 71-78, doi:10.1007/BF01239137. Pathier, E., B. Fruneau, B. t. Deffontaines, J. Angelier, C.-P. Chang, S.-B. Yu, and C.-T. Lee (2003), Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data, Earth Planet. Sc. Lett., 212(1), 73-88, doi:10.1016/S0012-821X(03)00244-9. Poisel, R., and A. Preh (2007), Landslide detachment mechanisms: An overview of their mechanical models, in the 2007 International Forum on Landslide Disaster Management, edited by Ho and Li. Poisel, R., and A. Preh (2008a), 3D landslide run out modelling using the particle flow code PFC3D, in the 10th International Symposium on Landslides and Engineering Slopes, Taylor and Francis, Londin. Poisel, R., and A. Preh (2008b), Modifications of PFC3D for rock mass fall modeling, in the 1st International FLAC/DEM Symposium, edited by C. D. R. Hart, and P. Cundall, Itasca Consulting Group, Inc., Minneapolis, August. Preh, A., and R. Poisel (2004), A UDEC model for" kink band slumping" type failures of rock slopes, in Numerical Modelling of Discrete Materials in Geotechnical Engineering, Civil Engineering and Earth Sciences: Proceedings of the 1st International UDEC/3DEC Symposium, edited by H. Konietzky, pp. 243-247, Balkema, Bochum, Germany. Preh, A., and R. Poisel (2007), 3D modelling of rock mass falls using the Particle Flow Code PFC3D, in the 11th Congress of the International Society for Rock Mechanics, Lisbon. Rumsey, H. C., G. A. Morris, R. R. Green, and R. M. Goldstein (1974), A radar brightness and altitude image of a portion of Venus, Icarus, 23(1), 1-7, doi:10.1016/0019-1035(74)90099-2. Samanta, S. K. (2015), Modes of slope failure in layered rocks of landslide zones: insight from finite element modelling, Indian Journal of Geosciences, 69(2), 117-130. Sharpe, C. F. S. (1938), Landslides and Related Phenomena: A Study of Mass-Movements of Soil and Rock, 136 pp, Pageant Books, New York, USA Shi, G. H., and R. E. Goodman (1985), Two dimensional discontinuous deformation analysis, Int. J. Nume. Anal. Met, 9(6), 541-556. Shyu, J. B. H., K. Sieh, and Y.-G. Chen (2005), Tandem suturing and disarticulation of the Taiwan orogen revealed by its neotectonic elements, Earth Planet. Sc. Lett., 233(1), 167-177, doi:10.1016/j.epsl.2005.01.018. Stanley, T., and D. B. Kirschbaum (2017), A heuristic approach to global landslide susceptibility mapping, Nat. Hazards, 87(1), 145-164, doi:10.1007/s11069-017-2757-y. Tang, C.-L., J.-C. Hu, M.-L. Lin, J. Angelier, C.-Y. Lu, Y.-C. Chan, and H.-T. Chu (2009), The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation, Eng. Geol., 106(1), 1-19. Tung, H., H.-Y. Chen, J.-C. Hu, K.-E. Ching, H. Chen, and K.-H. Yang (2016), Transient deformation induced by groundwater change in Taipei metropolitan area revealed by high resolution X-band SAR interferometry, Tectonophysics, 692, 265-277, doi:10.1016/j.tecto.2016.03.030. Tung, H., and J.-C. Hu (2012), Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR, Tectonophysics, 578, 126-135, doi:10.1016/j.tecto.2012.08.009. Varnes, D. J. (1978), Slope movement types and processes, in: Special Report 176: Landslides: Analysis and Control, edited by R. L. Schuster and R. J. Krizek, pp. 11-33, Transportation and Road Research Board, National Academy of Science, Washington D. C., USA Wang, W.-N., M. Chigira, and T. Furuya (2003), Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan, Eng. Geol., 69(1), 1-13, doi:10.1016/S0013-7952(02)00244-2. Wasowski, J., and F. Bovenga (2014), Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives, Eng. Geol., 174, 103-138, doi:10.1016/j.enggeo.2014.03.003. Wei, M., and D. T. Sandwell (2010), Decorrelation of L-band and C-band interferometry over vegetated areas in California, IEEE T. Geosci. Remote., 48(7), 2942-2952, doi:10.1109/TGRS.2010.2043442 Williams, J. R., and G. G. Mustoe (1987), Modal methods for the analysis of discrete systems, Comput. Geotech., 4(1), 1-19. Wu, P.-C. (2017), Surface Deformation Induced by Ground Water Pumping by PS-InSAR: Case Study on Construction of MRT in Taipei Basin, M.S. thesis, 87 pp., National Taiwan University, Taipei, Taiwan. Wu, Y.-Y., J.-C. Hu, G.-P. Lin, C.-P. Chang, H. Tung, and C.-H. Lu (2013), Transient active deformation in Tainan tableland using persistent scatterers SAR interferometry, B. Soc. Geol. Fr., 184(4-5), 441-450, doi:10.2113/gssgfbull.184.4-5.441 Zebker, H. A., and R. M. Goldstein (1986), Topographic mapping from interferometric synthetic aperture radar observations, J. Geophys. Res., 91(B5), 4993-4999, doi:10.1029/JB091iB05p04993. Zebker, H. A., and J. Villasenor (1992), Decorrelation in interferometric radar echoes, IEEE T. Geosci. Remote., 30(5), 950-959, doi:10.1109/36.175330. Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner (1994), On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake, J. Geophys. Res., 99(B10), 19617-19634, doi:10.1029/94JB01179. Zischinsky, U. (1966), On the Deformation of High Slopes, in the 1st Congress of the International Society of Rock Mechanics, Lisbon, Portugal. Zisk, S. H. (1972), Lunar topography: first radar-interferometer measurements of the Alphonsus-Ptolemaeus-Arzachel region, Science, 178(4064), 977-980, doi:10.1126/science.178.4064.977. 丹桂之助 (1944), 烏來統の諸層特に四稜砂岩層﹑白冷層﹑新高層の同時性に就いて(I), 臺灣博物學會會報, 34(248-249), 174-191﹒ 日本国立研究開発法人土木研究所 (2008), 深層崩壊の発生の恐れのある渓流抽出マニュアル (案), 土木研究所資料第4115号, 独立行政法人土木研究所土 砂管理研究グループ火山・土石流チーム﹒ 鈴木隆介 (2000), 建設技術者のための地形図読図入門 第 3 巻 段丘・丘陵・山地, 388p, 古今書院﹒ 工業技術研究院能源與礦業研究所(1984),廬山地熱區之地質。臺灣區地熱資源探勘評估報告之一——廬山地熱區。共92頁。臺北市:工業技術研究院能源與礦業研究所。 中央地質調查所(2000),九二一地震地質調查報告。共330頁。新北市:經濟部中央地質調查所。 王國隆與林俊廷(2015),運用ALOS PALSAR雷達影像之差分干涉成果於潛在崩塌地調查–以眉溪流域為例。航測及遙測學刊,19(3),253-265。 年佩芬(2004),利用合成孔徑雷達差分干涉技術觀測屏東地區地層下陷之研究。碩士論文。共96頁。臺北市:國立臺灣大學。 何春蓀(1975),臺灣地質概論:臺灣地質圖說明書。共153頁。新北市:經濟部中央地質調查所。 李錫堤、董家鈞與林銘郎(2009),小林村災變之地質背景探討。地工技術,122,87-94。 林啓文與陳文山(2016),臺灣地質圖。臺北市:中華民國地質學會。 林啟文、廬詩丁與陳文山(2012),臺灣活動斷層分布圖。新北市:經濟部中央地質調查所。 青山工程顧問股份有限公司與中央地質調查所(2011),大規模潛在山崩機制調查與活動性觀測(1/4)期末報告。共305頁。新北市:經濟部中央地質調查所。 青山工程顧問股份有限公司與中央地質調查所(2013),大規模潛在山崩機制調查與活動性觀測(3/4)期末報告。共322頁。新北市:經濟部中央地質調查所。 青山工程顧問股份有限公司與中央地質調查所(2014),大規模潛在山崩機制調查與活動性觀測(4/4)期末報告。共348頁。新北市:經濟部中央地質調查所。 洪如江、李錫堤、林美聆、林銘郎、鄭富書與陳正興(2000),天塹可以飛渡,崩山足以斷流(草嶺順向坡滑動)。地工技術,77,5-18。 胡宛琳(2015),2006年屏東雙地震前後恆春半島之地表變形與恆春斷層活動性。碩士論文。共73頁。臺北市:國立臺灣大學。 唐昭榮(2010),臺灣遽變式山崩傳送與堆積之顆粒流離散元素模擬。博士論文。共240頁。臺北市:國立臺灣大學。 唐昭榮、胡植慶、羅佳明與林銘朗(2009),遽變式山崩之PFC3D模擬初探-以草嶺與小林村為例。地工技術,122,143-152。 張志新與劉哲欣(主編)(2015),大規模崩塌災害防治行動綱領。共34頁。臺北市:國家災害防救科技中心。 張喭汝(2015),利用持久散射體差分干涉法研究臺北盆地地下水升降引起的地表變形。碩士論文,共143頁。臺北市:國立臺灣大學。 郭鶯萍(2017),探討泥岩區對臺灣西南部褶皺逆衝帶的高異常變形量之影響。碩士論文。共137頁。臺北市:國立臺灣大學。 陳卉瑄(2001),差分合成孔徑雷達應用於偵測集集地震地形變之研究。碩士論文。共104頁。臺北市:國立臺灣師範大學。 陳勉銘、魏正岳與費立沅(2010),國道3號順向坡滑動的地質解析。地質,29(2),12-15。 陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳政恆、楊昭男與李元希(2000),臺灣地質圖。新北市:經濟部中央地質調查所。 彭健豪(2008),九份二山地滑區滑動歷程與堆積行為之研究。碩士論文。共77頁。臺北市:國立臺灣大學。 楊昭男與羅偉(1986),臺灣中央山脈大禹嶺地區之地質構造。地質,7(2),11-33。 經濟部(2014),山崩與地滑地質敏感區劃定計畫書L0002南投縣-02。共23頁。臺北市:經濟部。 黎明工程顧問股份有限公司與水土保持局南投分局(2006),台14線88K至91K地滑地治理調查規劃工程報告。共241頁。南投縣:水土保持局南投分局。 黎明工程顧問股份有限公司與水土保持局南投分局(2008),廬山地滑監測及後續治理規劃。共179頁。南投縣:水土保持局南投分局。 戴于恒(2016),應用合成孔徑雷達差分干涉技術監測山崩之潛移現象—以九份及烏來地區為例。碩士論文。共120頁。桃園市:國立中央大學。 謝嘉聲、蕭達鴻、唐昭榮與胡植慶(2015),利用顆粒體離散元素法模擬莫拉克颱風所引致之新開崩塌。中華水土保持學報,46(1),29-37。 羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏與林銘郎(2011),國道3號七堵順向坡滑動過程之動態模擬。中華水土保持學報,42(3),175-183。 羅偉(1992),臺灣合歡山地區板岩層之層序及構造。經濟部中央地質調查所彙刊,8,1-29。 羅偉與楊昭男(2002),霧社圖幅,五萬分之一台灣地質圖及說明書第26號。新北市:經濟部中央地質調查所。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7642 | - |
| dc.description.abstract | 山崩是劇烈的地質災害,對生命與財產威脅甚大,是全球關注的科學議題之一。臺灣島位於歐亞板塊與菲律賓海板塊活動邊界,且是西太平洋副熱帶氣候區中,活躍的地質作用及多雨的氣候造就臺灣是高山崩潛勢的區域之一。面對潛在的山崩威脅,觀察監測與境況模擬是進行災害評估的重要途徑。
廬山聚落位於脊梁山脈板岩帶上,其地形坡向與板岩劈理順向,具有大規模山崩之虞;因此,本研究利用雷達持久散射體干涉技術(PS-InSAR,Persistent Scatterers Interferometric Synthetic Aperture Radar)與顆粒流程式(PFC,Particle Flow Code)個別元素方法(distinct element method),輔助監測聚落地表變形,並模擬變形之物理機制。 第一部分解算2007年至2010年的ALOS(Advanced Land Observation Satellite)衛星影像,並比對全球定位系統連續站(CGPS,Continuous Global Positioning System)時間序列。藉由CGPS時間序列中非雨季期間的速度值作為參考值,得到聚落中北側與南側兩個在視衛星方向(LOS,line of sight)上遠離衛星的速度負值區;並結合高精度數值地形模型(DEM,Digital Elevation Model)地形特徵圈繪潛移崩體。聚落中活動性較高的北端坡體位在塔羅灣溪攻擊坡上,PS-InSAR結果顯示在觀測期間以-40 ~ -60 mm/yr速度潛移變形,變形範圍擴及後方山脊,面積約20公頃。其餘聚落範圍則以-10 ~ -20 mm/yr變位,此外受限地形特徵不明顯與PS密度較疏,不足以研判細部的崩體邊界。 第二部分藉PFC個別元素法針對活動性較高的北端邊坡進行分析。首先透過弱化板岩邊坡之劈理弱面強度與岩石強度,觀察邊坡變形。試驗結果顯示強度弱化的岩體在模型中出現可觀察的系統性邊坡變形時,變形皆影響到邊坡後方脊線且變形深度都大於目前測傾管之孔深120 m,且變形邊界後緣發生沿高傾角劈理面的錯動。另一方面,藉由剪裂面摩擦係數測試,發現倘若邊坡滑動面完全發育時,或板岩發生剪動破壞,該邊坡能引致遽變式山崩。在地質材料之磨擦係數隨高速剪動而驟降的特性下,崩體能於5秒內增速至10 m/s,並於10秒內衝擊塔羅灣溪對岸。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:48:48Z (GMT). No. of bitstreams: 1 ntu-106-R04224207-1.pdf: 15488635 bytes, checksum: a47fac4c8e5a36c6b806fa461318fb0e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xii 第一章、緒論 1 1.1. 研究動機 1 1.2. 山崩與大規模崩塌 2 1.3. 山崩監測與遙測 4 1.4. 山崩之數值模擬 5 1.5. 論文架構與使用資料 6 第二章、研究區域地質與現地調查 9 2.1. 研究區域地質 9 2.1.1. 脊樑山脈西翼板岩帶與廬山層 12 2.1.2. 廬山地區附近地質 12 2.1.3. 廬山聚落地質 14 2.2. 現地調查與地形表徵判釋 16 第三章、合成孔徑雷達持久散射體干涉技術 20 3.1. 合成孔徑雷達持久散射體差分干涉法(PS-InSAR) 20 3.2. 解算流程:StaMPS/MTI 25 3.2.1. 前處理 25 3.2.2. 振幅與相位分析 26 3.2.3. PS選點 28 3.2.4. 位移估計 29 3.2.5. 空間干擾消除 30 3.3. 衛星影像資訊 31 3.4. 衛星影像波段與衛星觀測幾何特性 34 3.4.1. 衛星影像波段特性 34 3.4.2. 衛星觀測幾何特性 35 3.5. 地形幾何影響 35 第四章、顆粒流個別元素法 38 4.1. 顆粒流個別元素法(PFC) 38 4.1.1. 建模組成元素與基本假設 38 4.1.2. 計算週期 38 4.1.3. 力與位移律 39 4.1.4. 運動與時階 42 4.1.5. 接觸與鍵結的組成 43 4.1.6. 微觀參數與巨觀參數 45 4.2. PFC數值模擬方法之優勢與限制 46 4.3. 使用PFC於山崩分析之前人研究 46 4.4. 力學參數之採用 47 第五章、合成孔徑雷達持久散射體干涉技術觀察結果 49 5.1. 差分干涉影像(DInSAR) 49 5.2. 雷達持久散射體干涉技術觀測(PS-InSAR) 53 5.3. 持久性散射體分布與速度標準差 56 5.4. PS-InSAR與CGPS時間序列比較 57 5.5. 穩定參考速度 58 5.6. 地形效應與觀測敏感度檢視 60 5.7. 綜合地形特徵與測傾管紀錄比較 61 5.8. 小結與建議 68 第六章、個別元素法數值分析結果 69 6.1. 岩體強度弱化試驗 69 6.1.1. 試驗概述 69 6.1.2. 劈理弱面摩擦係數之弱化試驗 70 6.1.4. 變形機制與變形範圍 74 6.2. 穩定度分析 76 七、結論 79 參考文獻 81 附錄 A-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 潛在山崩 | zh_TW |
| dc.subject | 臺灣廬山聚落 | zh_TW |
| dc.subject | 合成孔徑雷達持久散射體干涉技術 | zh_TW |
| dc.subject | 個別元素法 | zh_TW |
| dc.subject | 顆粒流 | zh_TW |
| dc.subject | 板岩潛變 | zh_TW |
| dc.subject | Potential Landslide | en |
| dc.subject | Lushan Settlement | en |
| dc.subject | Taiwan | en |
| dc.subject | PS-InSAR (Persistent Scatterers Interferometric Synthetic Aperture Radar) | en |
| dc.subject | PFC (Particle Flow Code) | en |
| dc.subject | Distinct Element Method | en |
| dc.subject | Creeping slate slope | en |
| dc.title | 應用雷達持久散射體干涉技術與個別元素法評估山崩災害潛勢──以臺灣中部板岩區個案為例 | zh_TW |
| dc.title | Assessment of Potential Landslide Hazard by PS-InSAR and Distinct Element Method: A Case Study in Slate Belt, Central Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 朱傚祖;林銘郎;董家鈞;謝嘉聲 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Tsu Chu;Ming-Lang Lin;Jia-Jyun Dong;Chia-Sheng Hsieh | en |
| dc.subject.keyword | 臺灣廬山聚落,合成孔徑雷達持久散射體干涉技術,個別元素法,顆粒流,板岩潛變,潛在山崩, | zh_TW |
| dc.subject.keyword | Lushan Settlement, Taiwan,PS-InSAR (Persistent Scatterers Interferometric Synthetic Aperture Radar),PFC (Particle Flow Code),Distinct Element Method,Creeping slate slope,Potential Landslide, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU201704413 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2017-12-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 15.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
