請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳(Shana Smith) | |
| dc.contributor.author | Cheng-Chung Tsai | en |
| dc.contributor.author | 蔡証仲 | zh_TW |
| dc.date.accessioned | 2021-07-09T15:52:00Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Carneiro, F., Abreu, P., Restivo, M. T. (2018). Hysteresis compensation in a tactile device for arterial pulse reproduction. Sensors (Basel), 18(5) Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C., Nazeran, H. (2018). A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron, 4(4), 195-202 Che, X., Xu, X., Sun, J., Xu, H. (2015). Research on pulse power spectrum calculation method based on tcm. Paper presented at the IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, China. Fan YANG, Xiang CHEN, Hua JIN, LI, J. (2019). Design of right ventricle ppg signal generator. Paper presented at the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China. Hu, C.-S., Chung, Y.-F., Yeh, C.-C., Luo, C.-H. (2012). Temporal and spatial properties of arterial pulsation measurement using pressure sensor array. Evid Based Complement Alternat Med, 2012, 9 Johnson, J. E., Shay, O., Kim, C., Liao, C. (2019). Wearable millimeter-wave device for contactless measurement of arterial pulses. IEEE Trans Biomed Circuits Syst, 13(6), 1525-1534 Joshi, A., Kulkarni, A., Chandran, S., Jayaraman, V. K., Kulkarni, B. D. (2007). Nadi tarangini: A pulse based diagnostic system. Paper presented at the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France. 2207-2210 Kaisti, M., Panula, T., Leppanen, J., Punkkinen, R., Jafari Tadi, M., Vasankari, T., Pankaala, M. (2019). Clinical assessment of a non-invasive wearable mems pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit Med, 2, 39 Khashei, M., Bijari, M. (2010). An artificial neural network (p,d,q) model for timeseries forecasting. Expert Systems with Applications, 37(1), 479-489 Koo, J.-H., Tantiyartyanontha, T., Kim, Y.-M., Kang, H., Yang, T.-H. (2018). Application of magneto-rheological fluids for generating a wide range of radial pulse waveforms. Smart Materials and Structures, 27(12) Krittika Goyal, Agarwal, R. (2017). Pulse based sensor design for wrist pulse signal analysis and health diagnosis. Biomedical Research (2017), 28(12), 5187-5195 Lee, J. Y., Jang, M., Shin, S. H. (2017). Study on the depth, rate, shape, and strength of pulse with cardiovascular simulator. Evid Based Complement Alternat Med, 2017 Li, B. N., Fu;, B. B., Dong, M. C. (2008). Development of a mobile pulse waveform analyzer for cardiovascular health monitoring. Comput Biol Med, 38(4), 438-445 Li, J. Q., Li, R., Chen, Z. Z., Deng, G. Q., Wang, H., Mavromoustakis, C. X., Ming, Z. (2018). Design of a continuous blood pressure measurement system based on pulse wave and ecg signals. IEEE J Transl Eng Health Med, 6, 1900114 Lin, P.-H., Smith, S. (2018). A teleoperation system for reproducing tactile perception using frequency channel segregation. Paper presented at the AsiaHaptics, Inchen,Korea. 54-57 Liu, S., Hua, L., Lv, P., Yu, Y., Gao, Y., Sheng, X. (2018). A pulse condition reproduction apparatus for remote traditional chinese medicine. In Intelligent robotics and applications (pp. 453-464). Luo, C.-H., Chung, C.-Y. (2016). Non-invasive holistic health measurements using pulse diagnosis: Ii. Exploring tcm clinical holistic diagnosis using an ingestion test. European Journal of Integrative Medicine, 8(6), 926-931 Nie, J., Ji, M., Chu, Y., Meng, X., Wang, Y., Zhong, J., Lin, L. (2019). Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis. Nano Energy, 58, 528-535 Peng, W., Wangmeng, Z., Zhang, D. (2014). A compound pressure signal acquisition system for multichannel wrist pulse signal analysis. IEEE Transactions on Instrumentation and Measurement, 63(6), 1556-1565 Shin, K. Y., Jin, S. O., Youn, S. H., Joo, S. B., Jo, Y. H., Kwon, O. K., Huh, Y. (2011). A pulse wave simulator for palpation in the oriental medicine. Paper presented at the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA. 4163-4166 Shu, J.-J., Sun, Y. (2007). Developing classification indices for chinese pulse diagnosis. Complement Ther Med, 15(3), 190-198 Suguna, G., Veerabhadrappa, S. (2019). A review of wrist pulse analysis. Biomedical Research, 30(4), 538-545 Sun, Y., Dong, Y., Gao, R., Chu, Y., Zhang, M., Qian, X., Wang, X. (2018). Wearable pulse wave monitoring system based on mems sensors. Micromachines (Basel), 9(2) T. H. Yang, G. Jp, Koo, J. H., Woo, S. Y., Kim, J. U., Kim, Y. M. (2019). A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms. Biomed Eng Online, 18(1) Thakker, B., Vyas, A. L. (2010). Frequency domain analysis of radial pulse in abnormal health conditions. Paper presented at the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia. 227-231 Uguz, D. U., Venema, B., Leonhardt, S., Teichmann, D. (2019). Multifunctional photoplethysmography sensor design for respiratory and cardiovascular diagnosis. In World congress on medical physics and biomedical engineering 2018 (pp. 905-909). Wang, Y. J., Chen, C. H., Sue, C. Y., Lu, W. H., Chiou, Y. H. (2018). Estimation of blood pressure in the radial artery using strain-based pulse wave and photoplethysmography sensors. Micromachines (Basel), 9(11) Wu, C. M., Smith, S. (2017). A realistic remote human pulse reproduction system. Yang, T., Jiang, X., Zhong, Y., Zhao, X., Lin, S., Li, J., Zhu, H. (2017). A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sensors, 2(7), 967-974 Yang, T. H., Kim, J. U., Kim, Y. M., Koo, J. H., Woo, S. Y. (2019). A new blood pulsation simulator platform incorporating cardiovascular physiology for evaluating radial pulse waveform. J Healthc Eng, 2019 鄧鐵濤(1999)。中醫診斷學,台北:知音出本社。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76413 | - |
| dc.description.abstract | 在中醫的診斷中,把脈為診斷疾病的重要依據。然而中醫師為病患把脈時,無法將患者的脈搏跳動觸感轉換成量化的數據儲存,也難以得知該患者前次的脈象情況。目前大多數的脈搏量測裝置僅針對單一按壓力度下的脈搏量測,使用者難以任意調整按壓力度進行量測。在脈搏重現裝置方面,多數的裝置本體體積龐大且難以攜帶,而且多以進行固定的脈搏波形呈現。 本研究開發一套脈搏量測暨重現系統,量測及重現裝置皆基於體積小且方便攜帶的條件下開發。量測裝置方面,使用者能夠施加不同按壓力度,並且方便調整位置進行脈搏量測所開發的脈搏量測裝置,利用壓力感測器量測按壓力度,同時用薄膜式振動感測器(polyvinylidene difluoride, PVDF)量測人體脈搏原始振動訊號。使用田口法針對脈搏量測裝置進行最佳化設計。在重現裝置方面,依照使用者施加的按壓力度下,能夠重現由脈搏量測裝置所測得的脈搏訊號。 本研究使用類神經網路(artificial neural network, ANN)建立重現裝置電壓輸入訊號與脈搏重現訊號的轉換關係。結果顯示,浮、中、沉取之脈搏重現訊號,與原始脈搏訊號的判定係數R2分別為0.966、0.973、0.968。由此可證明本研究所開發之三指脈搏重現裝置,能夠正確重現人體脈搏振動訊號。 | zh_TW |
| dc.description.abstract | In the traditional Chinese medicine (TCM) diagnosis, pulse is an important indicator for medical diagnosis. However, when TCM doctors are taking the pulses for a patient, it is hard for them to quantize the pulse data. Without the quantitative pulse data, it is hard to obtain the past pulse history. Current measurement devices mostly focus on developing single pressure pulse measurement, making it less flexible to measure the pulse. As for the current reproduction devices, the size of the devices is large, which makes them unhandy and immovable. Since the portability is the key element in device development, this research develops a small-size pulse measurement and reproduction system. When using the measurement device, users are able to apply multiple pressures and adjust the position of the device according to their needs. In the measurement device, the pressure sensor is used to measure the pressure force, and the piezo film vibration sensor is used to measure the original vibration signal of human pulse. This research also applied Taguchi method for the measurement device optimization. The pulse signals obtained from the measuring device are further reproduced by the proposed reproducing device. This research uses an artificial neural network to establish the conversion relationship between the voltage input signal of the reproducing device and the pulse reproduce signal. The experiment results show that the three-finger pulse reproducing device developed by this research can correctly reproduce the human pulse vibration signal accurately. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-09T15:52:00Z (GMT). No. of bitstreams: 1 U0001-1708202014441000.pdf: 4767017 bytes, checksum: a1b89ace109c28158ae75dfbb707b281 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第2章 文獻回顧 3 2.1 脈搏量測裝置 3 2.1.1 壓力感測器(pressure sensor) 3 2.1.2 壓電感測器(piezoelectric sensor) 6 2.1.3 應變感測器(strain sensor) 7 2.1.4 光學感測器(photoplethysmography sensor) 8 2.1.5 脈搏量測裝置總結 9 2.2 脈搏重現裝置 11 2.2.1 機械式致動 11 2.2.2 液壓式致動 13 2.2.3 氣壓式致動 15 2.2.4 脈搏重現裝置總結 16 第3章 研究方法 18 3.1 硬體裝置 18 3.1.1 脈搏量測裝置 18 3.1.2 脈搏重現裝置 19 3.2 研究架構 19 第4章 主動式按壓脈搏量測裝置 21 4.1.1 硬體選用 21 4.1.2 機構設計 22 4.2 感測器訊號特性 25 4.3 脈搏量測裝置驗證機構 26 4.3.1 凸輪生成 26 4.3.2 驗證機構 28 4.3.3 脈搏量測裝置驗證結果 30 4.4 最佳化參數實驗設計 31 4.4.1 設計參數 31 4.4.2 田口法 33 4.4.3 實驗架構 34 4.4.4 設計參數實驗結果 35 4.5 脈搏量測裝置實體 37 4.5.1 量測裝置的壓力校正 37 4.5.2 主動式按壓脈搏量測裝置實體圖 38 第5章 脈搏重現裝置 41 5.1.1 重現裝置硬體選用 41 5.1.2 重現裝置機構設計 42 5.2 脈搏重現裝置模組 43 5.2.1 脈搏重現模組 43 5.2.2 壓力感測模組 44 5.2.3 脈搏重現裝置實體 45 5.3 脈搏重現訊號 47 5.4 脈搏重現裝置校正 49 第6章 類神經網路 51 6.1 轉換函式 51 6.2 NN訓練資料蒐集 53 6.2.1 脈搏訊號處理 54 6.2.2 驅動訊號轉換 54 6.2.3 NN訓練資料擷取硬體架構 55 6.2.4 NN訓練脈搏資料擷取流程 57 6.3 類神經網路模型訓練 59 6.3.1 NN模型 59 6.3.2 NN模型參數 60 6.3.3 類神經網路模型訓練結果 61 6.4 脈搏重現結果 62 6.4.1 脈搏重現測試 62 6.4.2 重現驗證結果與討論 67 第7章 結論與未來展望 68 7.1 結論 68 7.2 未來展望 69 參考文獻 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 脈搏量測 | zh_TW |
| dc.subject | 脈搏重現 | zh_TW |
| dc.subject | 田口法 | zh_TW |
| dc.subject | Taguchi method | en |
| dc.subject | artificial neural network | en |
| dc.subject | pulse reproduction | en |
| dc.subject | pulse measurement | en |
| dc.title | 主動式脈搏量測暨重現系統 | zh_TW |
| dc.title | Active Pulse Measurement and Reproduction System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃育熙(Yu-Hsi Huang),廖先順(Hsien-Shun Liao) | |
| dc.subject.keyword | 脈搏量測,脈搏重現,田口法,類神經網路, | zh_TW |
| dc.subject.keyword | pulse measurement,pulse reproduction,Taguchi method,artificial neural network, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202003752 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202014441000.pdf | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
