請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76353
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 楊禮亙 | zh_TW |
dc.date.accessioned | 2021-07-01T08:20:36Z | - |
dc.date.available | 2021-07-01T08:20:36Z | - |
dc.date.issued | 1998 | |
dc.identifier.citation | 1.官建洲(1997)群集於水稻第三對染色體上之第一族低分子量熱休克蛋白質的鑑定。國立臺灣大學植物科學研究所碩士論文。 2.邱啟洲(1997)胺基酸類似物誘導大豆第一族低分子量熱休克蛋白質生合成之生理生化分析及其與耐熱性的探討。國立臺灣大學植物科學研究所碩士論文。 3.陳家全,李家維,楊瑞森(1991)生物電子顯微鏡學。行政院國科會精密儀器發展中心編印。 4. Anderson, L.O., Borg, H., Mikaelesson, M. (1972) Molecular weight estimation of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20:199-202. 5. Arrigo, A.P., Suhan, J.P., Welch, W.J. (1988) Dynamic changes in the intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol. Cell. Biol. 8:5059-5071. 6. Arrigo, A.P., Landry, J. (1994) Expression and function of the low-molecular-weight heat shock proteins. in The Biology of Heat Shock Proteins and Molecular Chaperones. (Morimoto, R., Tissieres, A. and Geogeopoulos, C. eds.) Cold Spring Harbor Laboratory Press, NY. pp. 335-373. 7. Bentley, N.J., Fitch, I.T., Tuite, M.F. (1992) The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast 8:95-106. 8. Biecker K.L., Phillips, G.J., Silhavy, T.J. (1990) The sec and prl Genes of Escherichia coli. J. Bioenergetics Biomembranes. 22:291-310. 9. Bienz, M., Pelham, H.R.B. (1987) Mechanism of heat-shock gene deactivation in higher eukaryotes. Adv.Genet. 24:31-72. 10. Birnboim, H.C., Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1523. 11. Blum, H., Beier, H., Gross, H.J. (1989) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93-99. 12. Boyer, J.S. (1982) Plant productivity and environment. Science. 218:443-448. 13. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. 14. Caspers, G.J., Leunissen, J.A.M., de Jong, W.W. (1995) The expanding small heat shock protein family, and structure predictions of the conserved α-Crystallin domain. J. Mol. Evol. 40:238-248. 15. Chen, Q., Lauzon, L.M., DeRocher, A.E., Vierling, E. (1990) Accumulation, stability, and localization of a major chloroplast heat-shock protein. J. Cell Biol. 110:1873-1883. 16. Chou, M., Chen, Y.M., Lin, C.Y. (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 89:617-721. 17. Craig, E.A., Gross, C.A. (1991) Is hsp70 the cellular thermometer Trends Biochem.Sci. 16:135-140. 18. Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., Schekman, R. (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800-805. 19. Ellis, R.J. (1987) Proteins as molecular chaperones. Nature 328:378-379. 20. Fayet, O., Ziegelhoffer, T., Georgopoulos, C. (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171:1379-1385. 21. Fedorov, A.N., Baldwin, T.O. (1997) Cotranslational protein folding. J. Biol. Chem. 272:32715-32718. 22. Groenen, P.J.T.A., Merck, K.B., de Jong, W.W., Bloemendal, H. (1994) Structure and modification of the junior chaperone α -crystallin. From lens transparency to molecular pathology. Eur. J. Biochem. 225:1-19. 23. Gurley, W.B., Key, J.L. (1991) Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry 30:1-12. 24. Hartl, F.U. (1996) Molecular chaperones in cellular protein folding. Nature. 381:571-580. 25. Heckathorn, S.A., Downs, C.A., Sharkey, T.D., Coleman, J.S. (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116:439-444. 26. Helm, K.W., LaFayette, P.R., Nagao, R.T., Key, J.L., Vierling, E. (1993) Localization of small heat shock proteins to the higher plant endomembrane system. Mol.Cell.Biol. 13:238-247. 27. Helm, K.W., Lee, G.J., Vierling, E. (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114: 1477-1485. 28. Hickey, E., Brandon, S.E., Potter, R., Stein, J., Weber, L.A. (1986) Sequence and organization of gene encoding the human 27 kDa heat shock protein. Nucleic Acid Res. 14:4127-4145. 29. Horwitz, J. (1992) α-Crystallin can function as a molecular chaperone. Proc.Natl. Acad.Sci. USA 89:10449-10453. 30. Hsieh, M.H., Chen, J.T., Jinn, T.L., Chen, Y.M., Lin, C.Y. (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99:1279-1284. 31. Ingolia, T.D., Craig, E.A., McCarthy, B. (1980) Sequence of three copies of the gene for the major Drosophila heat shock induced protein and their flanking region. Cell. 21:219-230. 32. Jakob, U., Gaestel, M., Engel, K., Buchner, J. (1993) Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268:1517-1520. 33. Jinn, T.L., Chang, P.F.L., Chen, Y.M., Key, J.L., Lin, C.Y. (1997) Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean. Plant Physiol. 114:429-438. 34. Jinn, T.L., Chen, Y.M., Lin, C.Y. (1995) Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol. 108:693-701. 35. Jinn, T.L., Yeh, Y.H., Chen, Y.M., Lin, C.Y. (1989) Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedling. Plant Cell Physiol. 30:463-469 36. Jinn, T.L., Wu, S.H., Yeh, C.H., Hsieh, M.H., Yeh, Y.C., Chen, Y.M., Lin, C.Y. (1993) Immunological kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol. 34:1055-1062. 37. Key, J.L., Lin, C.Y., Chen, Y.M. (1981) Heat shock proteins of higher plants. Proc.Natl. Acad.Sci. USA 78:3526-3530. 38. Kim, K.K., Yokota, H., Santosa, S., Lerner, D., Kim, R., Kim, S.H. (1998) Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J.Struc.Biol., in press. 39. Knauf, U., Bielka, H., Gaestel, M. (1992) Over-expression of the small heat-shock protein, hsp25, inhibits growth of Ehrlich ascites tumor cells. FEBS Lett. 309:297-302. 40. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. 41. LaFayette, P.R., Nagao, R.T., O'Grady, K., Vierling, E., Key. J.L. (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol. Biol. 30:159-169. 42. Landry, J., Chretien, P., Lambert, H., Hickey, E., Weber, L.A. (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J. Cell Biol. 109:7-15. 43. Lee, G.J., Pokala, N., Vierling, E. (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270:10432-10438. 44. Lee, G.J., Roseman, A.M., Saibil, H.R., Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain in a folding-competent state. EMBO J. 16:659-671. 45. Leroux, M.R., Melki, R., Gordon, B., Batelier, G., Candido, E.P.M. (1997) Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272:24646-24656. 46. Lin, C.Y., Key, J.L. (1967) Disassociation and reassembly of polyribosomes in relation to protein synthesis in the soybean root. J.Mol.Biol. 26:237-247. 47. Lin, C.Y., Roberts, J.K., Key, J.L. (1984) Acquisition of thermotolerance in soybean seedlings. Plant Physiol. 74:152-160. 48. Lindquist, S., Kim, G. (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc.Natl.Acad.Sci. USA 93:5301-5306. 49. Lindquist, S. (1986) The heat-shock response. Ann.Rev.Biochem. 55:1151-1191. 50. Merck, K.B., Groenen, P.J.T.A., Voorter, C.E.M., de Haard-Hoekman, W.A., Horwitz, J., Bloemendal, H., de Jong, W.W. (1993) Structural and functional similarities of bovine α-crystallin and mouse small heat-shock protein. J. Biol. Chem. 268:1046-1052. 51. Milioni, D., Hatzopoulos, P. (1997) Genomic organization of hsp90 gene family in Arabidopsis. Plant Mol.Biol. 35:955-961. 52. Nagao, R.T., Kimpel, J.A., Key, J.L. (1990) Molecular and cellular biology of the heat-shock response. Adv. Genet. 28:235-274. 53. Netzer, W.J., Hartl, F.U. (1998) Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem.Sci. 23:68-73. 54. Neumann, D., Nover, L., Scharf, K.D. (1989) Heat shock and other stress response systems of plants. Springer-verlag, Berlin. 55. Oh, H.J., Chen, X.C., Subjeck, J.R. (1997) Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J. Biol. Chem. 272:31636-31640. 56. Osmond, C.B., Austin, M.P., Berry, J.A., Billings, W.D., Boyer, J.S., Dacey, J.W.H., Nobel, P.S., Smith, S.D., Winner, W.E. (1987) Stress physiology and the distribution of plants. BioScience. 37:38-48. 57. Parsell, D.A., Kowal, A.S., Singer, M.A., Lindquist, S. (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature. 372:475-478. 58. Petko, L., Lindquist, S. (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell. 45:885-894. 59. Phillips, G.J., Silhavy, T.J. (1990) Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Nature 344:882-884. 60. Prandl, R., Sch?ffl, F. (1996) Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant.Mol.Biol. 31:157-162. 61. Pratt, W. (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J. Biol. Chem. 268:21455-21458. 62. Ritossa, F. (1962) A new puffing pattern induced by temperature shock and DEP in Drosophila. Experoentia. 18:571-573. 63. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd Ed.Cold Spring Harbor Laboratory Press, NY. 64. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitor. Proc.Natl.Acad.Sci. USA 74:5463-5467. 65. Taiz, L., Zeiger, E. (1991) Plant physiology. The Benjamin/ Cummings Publishing Company, Inc. pp.346-370. 66. Tissieres, A., Mitchell, H.K., Tracy, U.M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J.Mol.Biol. 84:389-398. 67. Torella, C., Mattingly, J.R., Artigues, A., Iriarte, A., Martinez-Carrion, M. (1998) Insight into the conformation of protein folding intermediates trapped by GroEL. J. Biol. Chem. 273:3915-3925. 68. Tseng, T.S., Yeh, K.W., Yeh, C.H., Chang, F.C., Chen, Y.M., Lin, C.Y. (1992) Two rice (Oryza sativa) full-length cDNA clones encoding low-molecular-weight heat-shock proteins. Plant Mol. Biol. 18:963-965. 69. Vierling, E. (1991) The role of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620. 70. Waters, E.R., Lee, G.J., Vierling, E. (1995) Evolution, structure and function of the small heat shock proteins in plants. J.Exp.Biol. 47:1-14. 71. Welch, W.J., Feramisco, J.R. (1985) Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol.Cell.Biol. 5:1229-1237. 72. Wiech, H., Buchner, J., Zimmermann, R., Jakob, U. (1992) Hsp90 chaperones protein folding in vitro. Nature 358:169-170. 73. Xu, Y., Lindquist, S. (1993) Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc.Natl.Acad.Sci. USA 90:7074-7078. 74. Xu, Z., Horwich, A.L., Sigler, P.B. (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388:741-750. 75. Yeh, C.H., Yeh, K.W., Wu, S.H., Chang, P.F.L., Chen, Y.M., Lin, C.Y. (1995) A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol. 36:1341-1348. 76. Yeh, C.H., Chang, P.F.L., Yeh, K.W., Lin, W.C., Chen, Y.M., Lin, C.Y. (1997) Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc.Natl.Acad.Sci. USA 94:10967-10972. 77. Yeh, K.W., Jinn, T.L., Yeh, C.H., Chen, Y.M., Lin, C.Y. (1994) Plant low-molecular-mass heat-shock proteins: their relationship to the acquisition of thermotolerance in plants. Biothechnol.Appl.Biochem. 19:41-49. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76353 | - |
dc.description.abstract | 本研究以Oshsp16.9 cDNA為材料建構四轉殖質體,分別為pUC(只含pUC8表現載體)、pUC-FL(pUC8表現載體可表現全長的水稻第一族低分子量熱休克蛋白質Oshsp16.9 cDNA)、pUC-C108(pUC8表現載體可表現Oshsp16.9 cDNA C端108個胺基酸的DNA片段)及pUC-N78(pUC8表現載體可表現Oshsp16.9 cDNA N端78個胺基酸的DNA片段)。經轉型至JM-109型大腸桿菌後,其中pUC-FL及pUC-C108均能穩定的經IPTG誘導而表現外來蛋白質且能被Oshsp16.9抗體所辨識,但是pUC-N78卻無法表現。pUC-FL及pUC-C108二轉殖大腸桿菌於自然狀態下均會聚合形成高分子複合體,而其中pUC-FL的複合體經電子顯微鏡觀察為直徑約18?35 nm的球體狀構造,估計分子量界於220?240-kDa間並含有約12個Oshsp16.9單元體。 轉殖大腸桿菌在經IPTG誘導後於50℃的熱耐性測定,結果顯示pUC-FL細胞在高溫下的存活率較pUC-C108細胞的存活率為高,而若以高溫存活率半衰期比較,分別為70分鐘及22分鐘。大腸桿菌總蛋白質於55℃熱處理30分鐘的蛋白質熱穩定性測定,結果顯示pUC-FL轉殖大腸桿菌在經IPTG誘導後的總蛋白質熱變性程度可由43%降至18%,而JM-109、pUC及pUC-C108細胞於IPTG誘導前後的總蛋白質熱變性程度卻一直維持在50%左右。為尋找Oshsp16.9熱休克蛋白質在大腸桿菌中可能保護的對象及探討交互作用的型式,因此利用免疫沉澱的技術進行分析。結果顯示經IPTG誘導的pUC-FL細胞總蛋白質經45℃熱處理15分鐘後,其中有15個特殊蛋白質條帶與Oshsp16.9共同沉澱下來;而這些蛋白質均不會出現在未加熱處理的pUC-FL細胞總蛋白質之免疫沉澱分析結果中,至於這些蛋白質與Oshsp16.9的相互關係,則有待進一步研究。 | zh_TW |
dc.description.abstract | Four constructed plasmids were transformed into E. coli, including pUC (contains pUC8 vector only), pUC-FL (rice class I low molecular mass heat shock protein Oshsp16.9 cDNA ORF inserted into pUC8), pUC-C108 (DNA fragment containing C-terminal 108 amino acids of Oshsp16.9 cDNA ORF inserted into pUC8) and pUC-N78 (DNA fragment containing N-terminal 78 amino acids of Oshsp16.9 cDNA ORF inserted into pUC8). Foreign proteins expressed in pUC-FL and pUC-C108 cells with IPTG induction is stable and could be recognized by Oshspl6.9 antibody. Both foreign proteins expressed in pUC-FL and pUC-C108 cells formed high molecular weight native complexes. The native complex of pUC-FL cell had a globular form examined by electron microscopy, with a diameter between 18?35 nm and a molecular weight range of 220?240-kDa, with approximately 12 subunits. Studies on cell thermotolerance of transformants that were induced by IPTG at 50℃ showed that pUC-FL cells have a higher survivability compared to that of pUC-C108 cells, with LT50 of 70 minutes and 22 minutes, respectively. Studies on protein thermostability induced by IPTG showed that only 18% of pUC-FL total protein denatured at 55℃ for 30 minutes incubation. While the total protein of JM-109, pUC-C108, and pUC cells denatured up to 50% with or without IPTG induction. We used the immunoprecipitation technique to find whether Oshsp16.9 will interact with E. coli proteins under those stress conditions. Our results showed that, among the pUC-FL cell total proteins which were incubated at 45℃ for 15 minutes, 15 proteins co-precipitated with Oshspl6.9. These proteins did not co-precipitated with Oshspl6.9 without heat treatment. The interaction of the Oshsp16.9 and those co-precipitated proteins requires further investigation. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:20:36Z (GMT). No. of bitstreams: 0 Previous issue date: 1998 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………I 英文摘要……………………………………………………II 目錄……………………………………………………III 圖目錄……………………………………………………IV 附錄……………………………………………………V 縮寫對照表……………………………………………………VI 第一章 緒言……………………………………………………1 1-1 研究緣起……………………………………………………1 1-2 研究目的……………………………………………………1 第二章 文獻回顧……………………………………………………2 第三章 研究方法……………………………………………………9 第四章 結果……………………………………………………33 第五章 討論……………………………………………………56 第六章 總結及未來展望……………………………………………………64 參考文獻……………………………………………………66 | |
dc.language.iso | zh-TW | |
dc.title | 在大腸桿菌表現水稻第一族低分子量熱休克蛋白質之生理功能探討 | zh_TW |
dc.title | Characteristics of Oryza sativa Class I Low Molecular Mass Heat Shock Protein Expressed in E. coli | en |
dc.date.schoolyear | 86-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 72 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。