Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王俊能(Chun-Neng Wang)
dc.contributor.authorBo-Hong Yehen
dc.contributor.author葉柏宏zh_TW
dc.date.accessioned2021-05-19T17:48:33Z-
dc.date.available2028-12-31
dc.date.available2021-05-19T17:48:33Z-
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-01-31
dc.identifier.citationAbelson, J.N., Simon, M.I., Guthrie, C., and Fink, G.R. (2004). Guide to yeast genetics and molecular biology, Vol 194 (Gulf Professional Publishing).
Aguilar-Martínez, J.A., Poza-Carrión, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. The Plant Cell 19, 458-472.
Almeida, J., Rocheta, M., and Galego, L. (1997). Genetic control of flower shape in Antirrhinum majus. Development 124, 1387-1392.
Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34, W369-373.
Bemer, M., van Dijk, A.D., Immink, R.G., and Angenent, G.C. (2017). Cross-family transcription factor interactions: an additional layer of gene regulation. Trends in plant science 22, 66-80.
Chien, C.-T., Bartel, P.L., Sternglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proceedings of the National Academy of Sciences 88, 9578-9582.
Costa, M.M., Fox, S., Hanna, A.I., Baxter, C., and Coen, E. (2005). Evolution of regulatory interactions controlling floral asymmetry. Development 132, 5093-5101.
Crawford, B.C., Nath, U., Carpenter, R., and Coen, E.S. (2004). CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135, 244-253.
Cubas, P., Lauter, N., Doebley, J., and Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18, 215-222.
Danisman, S., van Dijk, A.D., Bimbo, A., van der Wal, F., Hennig, L., de Folter, S., Angenent, G.C., and Immink, R.G. (2013). Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of experimental botany 64, 5673-5685.
de Folter, S., and Immink, R.G. (2011). Yeast protein–protein interaction assays and screens. Plant Transcription Factors: Methods and Protocols, 145-165.
Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485-488.
Doyle, J.J. (1990). Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
Fields, S., and Song, O. (1989). A novel genetic system to detect protein-protein interactions. Nature 340, 245-246.
Finlayson, S.A. (2007). Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1. Plant and Cell Physiology 48, 667-677.
Flagel, L.E., and Wendel, J.F. (2009). Gene duplication and evolutionary novelty in plants. New Phytologist 183, 557-564.
Franco-Zorrilla, J.M., López-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., and Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences 111, 2367-2372.
Gaudin, V., Lunness, P.A., Fobert, P.R., Towers, M., Riou-Khamlichi, C., Murray, J.A., Coen, E., and Doonan, J.H. (2000). The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiology 122, 1137-1148.
Gietz, D., St Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.
Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C.P., Van Aken, O., Millar, A.H., Murcha, M., and Whelan, J. (2010). TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22, 3921-3934.
Guo, A.Y., Zhu, Q.H., Chen, X., and Luo, J.C. (2007). [GSDS: a gene structure display server]. Yi Chuan 29, 1023-1026.
Guo, Z., Fujioka, S., Blancaflor, E.B., Miao, S., Gou, X., and Li, J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 1161-1173.
Hammani, K., Gobert, A., Hleibieh, K., Choulier, L., Small, I., and Giege, P. (2011). An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell 23, 730-740.
Heery, D.M., Kalkhoven, E., Hoare, S., and Parker, M.G. (1997). A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733-736.
Hill, J., Donald, K.A., and Griffiths, D.E. (1991). DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19, 5791.
Hiratsu, K., Matsui, K., Koyama, T., and Ohme‐Takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34, 733-739.
Howarth, D.G., and Donoghue, M.J. (2006). Phylogenetic analysis of the “ECE”(CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences 103, 9101-9106.
Hsu, H.-C., Chen, C.-Y., Lee, T.-K., Weng, L.-K., Yeh, D.-M., Lin, T.-T., Wang, C.-N., and Kuo, Y.-F. (2015). Quantitative analysis of floral symmetry and tube dilation in an F 2 cross of Sinningia speciosa. Scientia Horticulturae 188, 71-77.
Hubbard, L., McSteen, P., Doebley, J., and Hake, S. (2002). Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162, 1927-1935.
Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology 153, 163-168.
Jabbour, F., Nadot, S., and Damerval, C. (2009). Evolution of floral symmetry: a state of the art. C R Biol 332, 219-231.
Kieffer, M., Master, V., Waites, R., and Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J 68, 147-158.
Kosugi, S., and Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9, 1607-1619.
Kosugi, S., and Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30, 337-348.
Koyama, T., Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2010). TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell 22, 3574-3588.
Koyama, T., Ohme-Takagi, M., and Sato, F. (2011). Generation of serrated and wavy petals by inhibition of the activity of TCP transcription factors in Arabidopsis thaliana. Plant Signal Behav 6, 697-699.
Lewis, J.M., Mackintosh, C.A., Shin, S., Gilding, E., Kravchenko, S., Baldridge, G., Zeyen, R., and Muehlbauer, G.J. (2008). Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep 27, 1217-1225.
Li, C., Potuschak, T., Colon-Carmona, A., Gutierrez, R.A., and Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci U S A 102, 12978-12983.
Lin, Y.F., Chen, Y.Y., Hsiao, Y.Y., Shen, C.Y., Hsu, J.L., Yeh, C.M., Mitsuda, N., Ohme-Takagi, M., Liu, Z.J., and Tsai, W.C. (2016). Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. Journal of Experimental Botany 67, 5051-5066.
Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen, E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367-376.
Luo, D., Carpenter, R., Vincent, C., Copsey, L., and Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature 383, 794-799.
Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils from protein sequences. Science 252, 1162-1164.
Ma, J., Wang, Q., Sun, R., Xie, F., Jones, D.C., and Zhang, B. (2014). Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Scientific reports 4, 6645.
Ma, X., Ma, J., Fan, D., Li, C., Jiang, Y., and Luo, K. (2016). Genome-wide Identification of TCP family transcription factors from populus euphratica and their involvement in leaf shape regulation. Scientific reports 6.
Manassero, N.G., Viola, I.L., Welchen, E., and Gonzalez, D.H. (2013). TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111-127.
Martin-Trillo, M., and Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science 15, 31-39.
Nath, U., Crawford, B.C., Carpenter, R., and Coen, E. (2003). Genetic control of surface curvature. Science 299, 1404-1407.
Navaud, O., Dabos, P., Carnus, E., Tremousaygue, D., and Herve, C. (2007). TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution 65, 23-33.
Pagnussat, G.C., Yu, H.J., Ngo, Q.A., Rajani, S., Mayalagu, S., Johnson, C.S., Capron, A., Xie, L.F., Ye, D., and Sundaresan, V. (2005). Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132, 603-614.
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263.
Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A.G., Angenent, G.C., and de Maagd, R.A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology 14, 157.
Poza-Carrion, C., Aguilar-Martinez, J.A., and Cubas, P. (2007). Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis. Plant Signaling and Behavior 2, 551-552.
Preston, J.C., and Hileman, L.C. (2009). Developmental genetics of floral symmetry evolution. Trends in Plant Science 14, 147-154.
Prince, V.E., and Pickett, F.B. (2002). Splitting pairs: the diverging fates of duplicated genes. Nature Reviews Genetics 3, 827-837.
Pruneda-Paz, J.L., Breton, G., Para, A., and Kay, S.A. (2009). A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481-1485.
Rueda-Romero, P., Barrero-Sicilia, C., Gómez-Cadenas, A., Carbonero, P., and Oñate-Sánchez, L. (2011). Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. Journal of experimental botany 63, 1937-1949.
Sarvepalli, K., and Nath, U. (2011). Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal 67, 595-607.
Schiestl, R.H., and Gietz, R.D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current genetics 16, 339-346.
Shi, P., Guy, K.M., Wu, W., Fang, B., Yang, J., Zhang, M., and Hu, Z. (2016). Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biology 16, 85.
Takeda, T., Amano, K., Ohto, M.A., Nakamura, K., Sato, S., Kato, T., Tabata, S., and Ueguchi, C. (2006). RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Molecular Biology 61, 165-177.
Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., and Ueguchi, C. (2003). The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal 33, 513-520.
Tatematsu, K., Nakabayashi, K., Kamiya, Y., and Nambara, E. (2008). Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. The Plant Journal 53, 42-52.
Uberti-Manassero, N.G., Lucero, L.E., Viola, I.L., Vegetti, A.C., and Gonzalez, D.H. (2011). The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. Journal of experimental botany 63, 809-823.
Viola, I.L., Manassero, N.G.U., Ripoll, R., and Gonzalez, D.H. (2011). The Arabidopsis class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNA-binding properties due to the presence of a threonine residue at position 15 of the TCP domain. Biochemical Journal 435, 143-155.
Viola, I.L., Reinheimer, R., Ripoll, R., Manassero, N.G., and Gonzalez, D.H. (2012). Determinants of the DNA binding specificity of class I and class II TCP transcription factors. The Journal of Biological Chemistry 287, 347-356.
Wang, C.-N., Hsu, H.-C., Wang, C.-C., Lee, T.-K., and Kuo, Y.-F. (2015). Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers. Frontiers in plant science 6.
Xu, R., Sun, P., Jia, F., Lu, L., Li, Y., Zhang, S., and Huang, J. (2014). Genomewide analysis of TCP transcription factor gene family in Malus domestica. Journal of Genetics 93, 733-746.
Yanai, O., Shani, E., Russ, D., and Ori, N. (2011). Gibberellin partly mediates LANCEOLATE activity in tomato. The Plant Journal 68, 571-582.
Zaitlin, D. (2012). Intraspecific diversity in Sinningia speciosa (Gesneriaceae: Sinningieae), and possible origins of the cultivated florist's gloxinia. AoB Plants 2012, pls039.
Zaitlin, D., and Pierce, A.J. (2010). Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 53, 1066-1082.
Zhang, J. (2003). Evolution by gene duplication: an update. Trends in ecology & evolution 18, 292-298.
Zheng, Y., Jiao, C., Sun, H., Rosli, H.G., Pombo, M.A., Zhang, P., Banf, M., Dai, X., Martin, G.B., Giovannoni, J.J., et al. (2016). iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Molecular Plant 9, 1667-1670.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7633-
dc.description.abstractTEOSINTE-BRANCHED 1/CYCLOIDEA/PCF (TCP)家族為植物獨有的轉錄因子,到了開花植物,由於基因不斷地複製特化產生新功能,其成員廣泛地被報導參與調控植物形態生長、營養及生殖器官發育,包含枝條、葉、花部、尤其是花兩側對稱性發育。然而,過往僅有少數非模式物種之 TCP轉錄因子基因家族被全面地進行序列釣取及檢驗其表現,以了解其參與了哪些器官的重要發育。野生種大岩桐有兩側對稱花,及突變反轉成輻射對稱花的馴化栽培品系;而且大岩桐屬植物,其葉部形態具有豐富的變異,可用來檢驗其TCP家族成員是否參與了花或葉的發育過程。為了解TCP基因在大岩桐的角色,我們從花瓣轉錄體中鑑定出30個TCP基因。為了釐清TCP基因對花及葉的發育角色,我們先重建大岩桐所有TCP基因演化樹,結果發現有15個Class I TCP基因和15個Class II TCP基因,其中Class II 包含3個CYC/TB1亞群TCP基因以及12個CIN亞群TCP基因。進一步分析TCP基因的序列結構,結果發現在CYC/TB1亞群中的TCP基因(SsTCP1, 13, 22)皆具有R domain,推測與蛋白質之間的交互作用有關。另外在CIN亞群中,SsTCP 19, 20, 27, 28, 29具有被miR319a調節的辨識位,可能和之前文獻報導的葉上下表面極性發育有關。而在RT-PCR檢驗其在發育時期及組織表現位置的結果,發現Class I TCP基因廣泛地在營養時期和繁殖時期有表現,Class II的CYC/TB1亞群主要在花表現,而在CIN亞群主要在葉表現。且大岩桐TCP基因數量比阿拉伯芥多,顯示似乎有多次基因複製多樣化現象,且這些複製出的基因有表現形式互補的現象或是組織專一性情況。如 CYC/TB1亞群中,SsTCP1, 22在花的時期有高表現,而CIN亞群的TCP基因在營養時期的組織有高表現。另外,SsTCP9、SsTCP22只在繁殖時期有表現以及背側花瓣的表現量高於腹側花瓣。另一方面,先前研究指出TCP轉錄因子常需透過形成同型或異型雙聚合體之方式對下游基因進行調控,且有些 TCP轉錄因子會進行自體調控或是相互調控。本研究以酵母菌雙雜合系統,來檢驗TCP蛋白間的交互作用關係,進一步推測其如何參與大岩桐的發育。結果顯示SsTCP有7個的同型蛋白質雙聚合體和57個異型蛋白質雙聚合體產生。而CIN亞群和CYC/TB1亞群相較下,CIN亞群基因間幾乎兩兩都有交互作用,而在CYC/TB1亞群基因間,則少數具有同型雙聚合體或異型雙聚合體產生,且與CIN亞群之間的蛋白質交互作用也較少。表示TCP轉錄因子傾向於各自分群內形成同體或異體雙聚合體,而群間有較少的交互作用。另外,CIN亞群在營養器官中會廣泛表現,可能是因傾向和其他TCP蛋白質形成雙聚合體,來一同調控下游基因。因此透過全面性的分析大岩桐TCP家族成員有助於進一步的瞭解其演化關係及基因特性,替往後研究,如功能性分析提供了TCP基因之基礎訊息。zh_TW
dc.description.abstractThe TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) family is a group of plant-specific transcription factors which obtain new functions after gene duplication in angiosperm. TCP family involves in wide range of plant developmental pathways such as branching, leaf development, floral organ morphogenesis, and especially in flower bilateral symmetry regulation. However, a little information about comprehensive analysis in roles of TCP family in non-model organisms, including identification of TCP genes and analysis of expression profile. Wild-type S. speciosa flower is bilateral symmetry, cultivated flower is radial symmetry and abundant variation in leaf shape. The TCP genes may modulate in development of flower or leaf. To explore the roles of TCP proteins on flower or leaf development of S. speciosa, a total of 30 TCP genes (SsTCPs) were identified from flower transcriptome of S. speciosa. The homology of these SsTCPs were clustered into class I and class II based on the sequence similarities in phylogeny. The class II SsTCPs can be further subdivided into subfamily of TB1/CYC and CIN. The SsTB1/CYC subclass homologs we found all contained R domain that presumably mediate protein–protein interaction. Those in the CIN subclass have mir319a targeting site implying they can be regulated for leaf morphogenesis. Additionally, expression profiles of these class I and class II SsTCPs were examined in different flower stages and vegetative organs to clarify their possible roles. Most of class I TCP genes were widely expressed through vegetative phase and reproductive phase. The CYC/TB1-type genes were highly detected in flowers, while the CIN-type genes were highly detected in leaves. In addition, the number of TCP genes in S. speciosa was higher than that in Arabidopsis. It is suggesting that the expansion of TCP family in S. speciosa may be caused by gene duplication, and these duplicate genes exhibited complementary or tissue-specific patterns. For example, in TB1/CYC subclass, SsTCP 1 and 22 were highly expressed in flower. In CIN subclass, SsTCP genes were highly expressed in vegetative phase. SsTCP 9 and SsTCP 22 only expressed in flower organs and highly expressed in dorsal petal than ventral petal. On the other hand, TCP proteins tend to form homodimers or heterodimers with other TCP proteins, and dimerization may be required for their DNA-binding activity and hence for their biological activity. Therefore, we performed yeast two-hybrid assays to examine dimer formation among class II SsTCP proteins. The results showed the 7 homodimer formations and 57 heterodimer formations, and CIN subfamily have more abundant interactions than CYC/TB1 subfamily. It suggested TCP proteins form homodimers and heterodimers particularly with proteins within the same class. Furthermore, SsTCP proteins of CIN subfamily tend to form dimer with other TCP proteins, and widely expressed in vegetative organs to modulate the downstream genes. Together, these results shall clarify possible evolutionary relationships of TCP family, and may provide the foundation for further study on the functions of TCP genes in S. speciosa development.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:48:33Z (GMT). No. of bitstreams: 1
ntu-107-R03b21021-1.pdf: 7460819 bytes, checksum: 11afdbc02f9c196da2fdf9f1d43dcd6f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 I
Abstract III
Content V
Index of Tables and Figures VIII
Abbreviations X
Introduction 1
1.1 Evolution of TCP proteins 1
1.2 Structure of the TCP proteins 2
1.3 Fundamental roles of class II TCP transcription factors 3
1.4 Findings of class II TCP proteins 4
1.4.1 CIN protein control the leaf development 4
1.4.2 TB1 protein control the branching 4
1.4.3 CYC protein control the flower development 5
1.5 TCP proteins form homo- and heterodimers 6
1.6 Protein-protein interaction via yeast two-hybrid assays 6
1.7 TCP proteins recognize specific DNA sequence 8
1.8 Sinningia speciosa 8
Aim of the study 10
Materials and Methods 11
2.1 Plant materials and growth conditions 11
2.2 TCP sequence identification and cloning 13
2.2.1 Genomic DNA extraction 13
2.2.2 Polymerase chain reaction 14
2.2.3 Isolation of the sequence of SsTCP genes 16
2.2.4 Sequence alignments and phylogenetic analysis 17
2.2.5 Gene structure and conserved motif 17
2.3 Gene expression analysis of TCP genes 18
2.3.1 Total RNA extraction 18
2.3.2 Reverse transcription polymerase chain reaction (RT-PCR) 18
2.3.3 Agarose gel electrophoresis 19
2.3.4 Quantitative real-time PCR (qRT-PCR) analysis 20
2.4 Yeast two-hybrid assays 21
2.4.1 The vector construction for yeast two-hybrid assays 21
2.4.2 LiAc-mediated yeast transformation 24
2.4.3 Analysis of yeast plasmid inserts by colony PCR 26
2.4.4 Long-term storage of yeast 27
Results 28
3.1 Identification of TCP genes in Sinningia speciosa 28
3.2 Sequence comparison 32
3.3 Gene structure and conserved motifs 34
3.4 Phylogenetic of SsTCPs 43
3.5 Expression profiles 45
3.6 Interactions among S. speciosa TCP proteins. 52
Discussion 70
4.1 Evolutionary conservation and divergence of the TCP family in S. speciosa 70
4.2 Analysis of phylogenetic relationship and gene structure 70
4.3 TCP transcription factors were widely existed in S. speciosa 74
4.4 Interactions between S. speciosa class II TCP proteins 76
Conclusion 78
References 79
Appendixes 85
dc.language.isoen
dc.title大岩桐TCP轉錄因子之特性分析zh_TW
dc.titleIdentification, expression profiles and characterization of the TCP genes in Sinningia speciosaen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁治(Jen-Chih Chen),蔡文杰(Wen-Chieh Tsai)
dc.subject.keywordTCP轉錄因子,大岩桐,植物發育,基因表現模式,蛋白質交互作用,zh_TW
dc.subject.keywordTCP transcription factor,Sinningia speciosa,plant development,gene expression profiles,protein-protein interaction,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201800221
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
dc.date.embargo-lift2028-12-31-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  此日期後於網路公開 2028-12-31
7.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved