Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍
dc.contributor.authorChing-Jung Linen
dc.contributor.author林靖容zh_TW
dc.date.accessioned2021-05-19T17:48:23Z-
dc.date.available2028-12-31
dc.date.available2021-05-19T17:48:23Z-
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-02-07
dc.identifier.citation林露。2014。番茄抗青枯病品系 Hawaii 7996 之解序與其抗第一演化行青枯病菌基因座Bwr12之研究。國立臺灣大學植物科學研究所碩士論文。
鄭峰繼。2015。初級免疫反應在番茄 Hawaii 7996 數量性狀位點Bwr12抗青枯病能力扮演重要角色。國立臺灣大學植物科學研究所碩士論文。
Afzal, A.J., Wood, A.J., and Lightfoot, D.A. (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant Microbe Interact. 21: 507–517.
Avila, J.R., Lee, J.S., and Torii, K.U. (2015). Co-immunoprecipitation of membrane-bound receptors. Arab. Book 13: e0180.
Bae, C., Han, S.W., Song, Y.-R., Kim, B.-Y., Lee, H.-J., Lee, J.-M., Yeam, I., Heu, S., and Oh, C.-S. (2015). Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theor. Appl. Genet. 128: 1219–1229.
Ben, C., Debellé, F., Berges, H., Bellec, A., Jardinaud, M.-F., Anson, P., Huguet, T., Gentzbittel, L., and Vailleau, F. (2013). MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytol. 199: 758–772.
Böhm, H., Albert, I., Fan, L., Reinhard, A., and Nürnberger, T. (2014). Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20: 47–54.
Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545–580.
Büttner, D. (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40: 894–937.
Chen, Y., Ren, X., Zhou, X., Huang, L., Yan, L., Lei, Y., Liao, B., Huang, J., Huang, S., Wei, W., and Jiang, H. (2014). Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics 15: 1078.
Chen, Y.-Y., Lin, Y.-M., Chao, T.-C., Wang, J.-F., Liu, A.-C., Ho, F.-I., and Cheng, C.-P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol. Plant. 136: 324–335.
Cheng, F. and Williamson, J.D. (2010). Is there leaderless protein secretion in plants? Plant Signal. Behav. 5: 129–131.
Choi, H.W. and Klessig, D.F. (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 16: 232.
Corwin, J.A. and Kliebenstein, D.J. (2017). Quantitative resistance: More than just perception of a pathogen. Plant Cell 29: 655–665.
Couto, D. and Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16: 537–552.
Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66: 487–511.
Dangl, J.L., Horvath, D.M., and Staskawicz, B.J. (2013). Pivoting the plant immune system from dissection to deployment. Science 341: 746–751.
De Coninck, B., Timmermans, P., Vos, C., Cammue, B.P.A., and Kazan, K. (2015). What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 20: 91–101.
Denancé, N. et al. (2013a). Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J. Cell Mol. Biol. 73: 225–239.
Denancé, N., Sánchez-Vallet, A., Goffner, D., and Molina, A. (2013b). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front. Plant Sci. 4: 155.
Fegan, M., and Prior, P. (2005). How complex is the 'Ralstonia solanacearum species complex'? In Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. C. Allen, P. Prior, and A. C. Hayward, eds. (American Phytopathological Society, St. Paul, MN), pp. 449-461.
French, E., Kim, B.-S., Rivera-Zuluaga, K., and Iyer-Pascuzzi, A. (2017). Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato. Mol. Plant-Microbe Interact. doi: 10.1094 /MPMI-08-17-0209-R.
Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y.T., Chen, S., Li, X., and Zhang, Y. (2009). Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6: 34–44.
Gish, L.A. and Clark, S.E. (2011). The RLK/Pelle family of kinases. Plant J. Cell Mol. Biol. 66: 117–127.
Hernández-Blanco, C. et al. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19: 890–903.
Hirsch, J., Deslandes, L., Feng, D.X., Balagué, C., and Marco, Y. (2002). Delayed symptom development in ein2-1, an Arabidopsis Ethylene-Insensitive Mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92: 1142–1148.
Ho, G.D. and Yang, C.H. (1999). A single locus leads to resistance of Arabidopsis thaliana to bacterial wilt caused by Ralstonia solanacearum through a hypersensitive-like response. Phytopathology 89: 673–678.
Horita, M., Tsuchiya, K., Suga, Y., Yano, K., Waki, T., Kurose, D., and Furuya, N. (2014). Current classification of Ralstonia solanacearum and genetic diversity of the strains in Japan. J. Gen. Plant Pathol. 80: 455–465.
Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turrà, D., Di Pietro, A., and Zhang, W. (2014). The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 10: e1004331.
Hu, J., Barlet, X., Deslandes, L., Hirsch, J., Feng, D.X., Somssich, I., and Marco, Y. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PloS One 3: e2589.
Huet, G. (2014). Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 5: 715.
Ishihara, T., Mitsuhara, I., Takahashi, H., and Nakaho, K. (2012). Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS ONE 7: e46763.
Jacob, F., Vernaldi, S., and Maekawa, T. (2013). Evolution and conservation of plant NLR functions. Front. Immunol. 4: 297.
Jin, J., Cardozo, T., Lovering, R.C., Elledge, S.J., Pagano, M., and Harper, J.W. (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18: 2573–2580.
Jones, J.D.G., Vance, R.E., and Dangl, J.L. (2016). Intracellular innate immune surveillance devices in plants and animals. Science 354: aaf6395.
Kadota, Y., Shirasu, K., and Zipfel, C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56: 1472–1480.
Katagiri, F. (2004). A global view of defense gene expression regulation--a highly interconnected signaling network. Curr. Opin. Plant Biol. 7: 506–511.
Koornneef, A. and Pieterse, C.M.J. (2008). Cross talk in defense signaling. Plant Physiol. 146: 839–844.
Le Roux, C. et al. (2015). A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161: 1074–1088.
Lebeau, A., Gouy, M., Daunay, M.C., Wicker, E., Chiroleu, F., Prior, P., Frary, A., and Dintinger, J. (2013). Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor. Appl. Genet. 126: 143–158.
Lee, H.-A., Lee, H.-Y., Seo, E., Lee, J., Kim, S.-B., Oh, S., Choi, E., Choi, E., Lee, S.E., and Choi, D. (2017). Current understandings of plant nonhost resistance. Mol. Plant-Microbe Interact. 30: 5–15.
Letunic, I. and Bork, P. (2017). 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46: D493–D496.
Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Green, S.K., Wang, J.-F., and Cheng, C.-P. (2004). Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res. 13: 567–581.
Lin, Y.-M., Chou, I.-C., Wang, J.-F., Ho, F.-I., Chu, Y.-J., Huang, P.-C., Lu, D.-K., Shen, H.-L., Elbaz, M., Huang, S.-M., and Cheng, C.-P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol. Plant-Microbe Interact. 21: 1261–1270.
Liu, A.-C. and Cheng, C.-P. (2017). Pathogen‐induced ERF68 regulates hypersensitive cell death in tomato. Mol. Plant Pathol. 18: 1062–1074.
Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou, J.-M., and Chai, J. (2012). Chitin-induced dimerization activates a plant immune receptor. Science 336: 1160–1164.
Lloyd, S.R., Schoonbeek, H.-J., Trick, M., Zipfel, C., and Ridout, C.J. (2014). Methods to study PAMP-triggered immunity in Brassica species. Mol. Plant-Microbe Interact. 27: 286–295.
Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. (2010). S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum. Plant Physiol. 152: 2023–2035.
Mandal, S., Das, R.K., and Mishra, S. (2011). Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49: 117–123.
Mansfield, J. et al. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13: 614–629.
Marino, D., Dunand, C., Puppo, A., and Pauly, N. (2012). A burst of plant NADPH oxidases. Trends Plant Sci. 17: 9–15.
Matsushima, N. and Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules 2: 288–311.
Matsushima, N., Miyashita, H., Mikami, T., and Kuroki, Y. (2010). A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif. BMC Microbiol. 10: 235.
Meng, F. (2013). Ralstonia Solanacearum species complex and bacterial wilt disease. J. Bacteriol. Parasitol. 4: e119.
Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., and Ausubel, F.M. (2010). Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22: 973–990.
Milling, A., Babujee, L., and Allen, C. (2011). Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PloS One 6: e15853.
Moreau, P., Thoquet, P., Olivier, J., Laterrot, H., and Grimsley, N. (1998). Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol. Plant. Microbe Interact. 11: 259–269.
Mueller, K., Bittel, P., Chinchilla, D., Jehle, A.K., Albert, M., Boller, T., and Felix, G. (2012). Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24: 2213–2224.
Muthamilarasan, M. and Prasad, M. (2013). Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 38: 433–449.
Nakano, M., Nishihara, M., Yoshioka, H., Takahashi, H., Sawasaki, T., Ohnishi, K., Hikichi, Y., and Kiba, A. (2013). Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PloS One 8: e75124.
Narancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaró, F., Pritsch, C., and Rizza, M.D. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. Eur. J. Plant Pathol. 136: 823–835.
Newman, M.-A., Sundelin, T., Nielsen, J.T., and Erbs, G. (2013). MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4: 139
Nguyen, H.P., Chakravarthy, S., Velásquez, A.C., McLane, H.L., Zeng, L., Nakayashiki, H., Park, D.-H., Collmer, A., and Martin, G.B. (2010). Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant. Microbe Interact. 23: 991–999.
Ozgur, R., Turkan, I., Uzilday, B., and Sekmen, A.H. (2014). Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J. Exp. Bot. 65: 1377–1390.
Panthee, D.R., Piotrowski, A., and Ibrahem, R. (2017). Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int. J. Mol. Sci. 18: 1589.
Park, C.-J., Caddell, D.F., and Ronald, P.C. (2012). Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front. Plant Sci. 3: 177.
Park, Y., Hwang, J., Kim, K., Kang, J., Kim, B., Xu, S., and Ahn, Y. (2013). Development of the gene-based SCARs for the Ph-3 locus, which confers late blight resistance in tomato. Sci. Hortic. 164: 9–16.
Peeters, N., Guidot, A., Vailleau, F., and Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14: 651–662.
Peng, H.-C. and Kaloshian, I. (2014). The tomato Leucine-Rich Repeat receptor-like kinases SlSERK3A and SlSERK3B have overlapping functions in bacterial and nematode innate immunity. PLoS ONE 9: e93302.
Pieterse, C.M.J., Does, D.V. der, Zamioudis, C., Leon-Reyes, A., and Wees, S.C.M.V. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28: 489–521.
Pruitt, R.N. et al. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1: e1500245.
Prusky, D. and Lichter, A. (2007). Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage. FEMS Microbiol. Lett. 268: 1–8.
Purkayastha, A. and Dasgupta, I. (2009). Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol. Biochem. 47: 967–976.
Rodriguez, M.C.S., Petersen, M., and Mundy, J. (2010). Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621–649.
Roux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., Roby, D., and Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol. Plant Pathol. 15: 427–432.
Sagi, M., Davydov, O., Orazova, S., Yesbergenova, Z., Ophir, R., Stratmann, J.W., and Fluhr, R. (2004). Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 16: 616–628.
Salgon, S., Jourda, C., Sauvage, C., Daunay, M.-C., Reynaud, B., Wicker, E., and Dintinger, J. (2017). Eggplant resistance to the Ralstonia solanacearum species complex involves both broad-spectrum and strain-specific quantitative trait loci. Front. Plant Sci. 8: 828.
Sánchez-Vallet, A., López, G., Ramos, B., Delgado-Cerezo, M., Riviere, M.-P., Llorente, F., Fernández, P.V., Miedes, E., Estevez, J.M., Grant, M., and Molina, A. (2012). Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol. 160: 2109–2124.
Sarris, P.F. et al. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161: 1089–1100.
Schulze, B., Buhmann, M.T., Río Bártulos, C., and Kroth, P.G. (2015). Comprehensive computational analysis of leucine-rich repeat (LRR) proteins encoded in the genome of the diatom Phaeodactylum tricornutum. Mar. Genomics 21: 43–51.
Scott, J.W. (ifas, Somodi, G.C., and Jones, J.B. (1988). Bacterial spot resistance is not associated with bacterial wilt resistance in tomato. Proc. Annu. Meet. Fla. State Hortic. Soc. USA. 101: 390–392
Song, L.-X., Xu, X.-C., Wang, F.-N., Wang, Y., Xia, X.-J., Shi, K., Zhou, Y.-H., Zhou, J., and Yu, J.-Q. (2017). Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant Cell Environ.: pce.12952.
Takabatake, R. and Mukaihara, T. (2011). Extracts from Ralstonia solanacearum induce effective resistance to the pathogen in both Arabidopsis and solanaceous plants. J. Gen. Plant Pathol. 77: 33–42.
Tang, D., Wang, G., and Zhou, J.-M. (2017). Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell 29: 618–637.
Thoquet, P. (1996). Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol. Plant. Microbe Interact. 9: 826.
Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310–317.
Tran, T., Chen, S., and Wang, X. (2017). Root assays to study pattern-triggered immunity in plant-nematode interactions. Eur. J. Plant Pathol. 147: 955–961.
Vinoth, S., Gurusaravanan, P., and Jayabalan, N. (2013). Optimization of factors influencing microinjection method for Agrobacterium tumefaciens-mediated transformation of tomato. Appl. Biochem. Biotechnol. 169: 1173–1187.
Wang, J.-F., Hanson, P., and Barnes, J.A. (1998). Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In Bacterial Wilt Disease (Springer, Berlin, Heidelberg), pp. 269–275.
Wang, J.-F., Ho, F.-I., Truong, H.T.H., Huang, S.-M., Balatero, C.H., Dittapongpitch, V., and Hidayati, N. (2013). Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190: 241–252.
Wei, Z., Huang, J., Yang, T., Jousset, A., Xu, Y., Shen, Q., and Friman, V.-P. (2017). Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J. Appl. Ecol. 54: 1440–1448.
Wrzaczek, M., Brosché, M., and Kangasjärvi, J. (2013). ROS signaling loops - production, perception, regulation. Curr. Opin. Plant Biol. 16: 575–582.
Wulff, B.B.H., Horvath, D.M., and Ward, E.R. (2011). Improving immunity in crops: new tactics in an old game. Curr. Opin. Plant Biol. 14: 468–476.
Xiao, X., Lin, W., Li, K., Li, W., Gao, X., and Lv, L. (2017). Early burst of reactive oxygen species positively regulates resistance of eggplant against bacterial wilt. J. Phytopathol. 165: 652–661.
Xin, X.-F. and He, S.Y. (2013). Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51: 473–498.
Yamchi, A. (2017). Proteomics analysis of Medicago truncatula response to infection by the phytopathogenic bacterium Ralstonia solanacearum points to jasmonate and salicylate defence pathways. Cell. Microbiol. doi: 10.1111/cmi.12796.
Yu, X., Feng, B., He, P., and Shan, L. (2017). From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55: 109–137.
Yue, J.-X., Meyers, B.C., Chen, J.-Q., Tian, D., and Yang, S. (2012). Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol. 193: 1049–1063.
Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., and Zhang, Y. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11: 253–263.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7630-
dc.description.abstract青枯病是由細菌Ralstonia solanacearum (Rs)引起之土壤性維管束病害,造成全球許多重要經濟作物之嚴重損失卻無有效化學防治方法,因此抗病育種對於控制病情極為重要。目前穩定的番茄抗青枯病品系Hawaii 7996 (H7996)之多個QTL雖已定位,然而其抗病分子機制與主導之抗病基因仍未知。我們先前研究顯示H7996具有強烈pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI),而且主導Rs phylotype I之抗性之QTL Bwr12及其上兩個基因 (12g520、12g550) 參與其中。本研究旨在進一步探討H7996、12g520及12g550在防禦反應之特性與相關訊息傳導路徑。施用訊息傳遞抑制劑之試驗顯示細胞質鈣離子累積、mitogen-activated protein kinase (MAPK) 傳導及NADPH oxidase參與H7996之PTI誘導反應。蛋白質定位結果顯示12g520應座落於植物細胞膜,12g550則可能座落於植物細胞膜及細胞核。功能性遺傳學與基因表現特性等分析結果顯示12g520與12g550在番茄與菸草PTI反應與抵抗多種病原細菌之抗病反應中為正向調控者,且細胞質鈣離子累積、MAPK傳導及NADPH oxidase參與12g520與12g550調控之PTI反應。酵母菌雙雜交與雙分子螢光互補試驗結果顯示12g520在未誘導PTI之狀況下可能不會與細胞膜上已知之PTI重要成員SlFLS2、SlSERK3A或SlSERK3B有交互作用,而12g550也可能不會與NADPH oxidase SlWFI1或SlRboh1有交互作用。預期本研究有助於提供番茄抗青枯病與廣效抗病性之關鍵訊息,未來可進一步搜尋其可能作用蛋白與其上下游關係以釐清其作用機制。zh_TW
dc.description.abstractBacterial wilt (BW), caused by Ralstonia solanacearum (Rs), is a devastating disease of many crops, and breeding for durable resistance is urgent and important for disease control. Tomato cultivar Hawaii 7996 (H7996) is a readily stable resistance source for BW control. Although various BW-resistance-associated quantitative trait loci (QTLs) have been mapped on H7996 chromosomes, the involved molecular mechanisms and the gene identities remain undetermined. Our previous studies showed that H7996 possesses strong PTI responses, and the major QTL associated with the H7996 resistance against Rs phylotype I strains, namely Bwr12, and two Bwr12–associated genes (12g520、12g550) are positively involved in PTI. This study aimed to investigate nature of H7996 and 12g520/12g550-mediated PTI responses and the involved signaling transduction pathways. The results of inhibitor treatment revealed the involvement of calcium influx, mitogen-activated protein kinase (MAPK) cascades and NADPH oxidase in H7996-mediated PTI responses. Transient expression assay suggested that 12g520 localizes on plasma membrane of Nicotiana benthamiana (Nb), while 12g550 might localize in plasma membrane and nucleus. Functional genetic studies and transcriptional expression analyses revealed positive roles of 12g520 and 12g550 in PTI and defense against distinct pathogens, and the involvement of calcium influx, MAPK cascades and NADPH oxidase in 12g520- and 12g550-mediated PTI responses. In addition, under normal conditions, the yeast-two-hybrid and bimolecular fluorescence complementation (BiFC) assays suggested that 12g520 might not directly interact with SlSERK3A, SlSERK3B or SlFLS2, and that 12g550 might not directly interact with tomato NADPH oxidases SlWFI1 and SlRboh1. These results along with future studies are projected to shed light on H7996 defense mechanisms. Further identification of interacting proteins and possible functional relationships would help elucidate the underlying regulatory mechanisms for their functions.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:48:23Z (GMT). No. of bitstreams: 1
ntu-107-R04b42015-1.pdf: 9750002 bytes, checksum: 88a6947c72c52cf23e6a04824d0fe43b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
中文摘要 III
Abstract IV
常用縮寫與全名對照表 V
目錄 VII
圖目錄 X
第一章 前言 1
1. 植物病害防禦機制 1
1.1 植物抗病反應 1
1.2 植物抗病訊息傳遞 2
1.3 PTI訊息傳遞與其下游相關反應 3
2. 植物白胺酸重覆 (Leucine rich repeat, LRR) 蛋白質的特性 4
2.1 LRR receptors結構與功能 4
2.2 LRR receptors 與病原菌之交互作用 5
3. 青枯病 (Bacterial wilt, BW) 5
3.1 番茄之青枯病反應相關研究 6
3.2 阿拉伯芥之青枯病反應相關研究 7
3.3其他作物之青枯病反應相關研究 8
4. 前人研究與研究動機 9
第二章 材料與方法 10
1. 植物材料與栽培條件 10
2. 微生物材料與培養條件 10
3. 序列分析與統計分析 11
4. 選殖技術 (Cloning) 11
4.1 聚合酶連鎖反應 (polymerase chain reaction, PCR) 11
4.2 DNA 瓊脂糖凝膠電泳 (Agarose gel electrophoresis) 12
4.3 DNA 片段純化 (DNA purification) 12
4.4 DNA 限制酶消化水解 (DNA digestion) 12
4.5 DNA 片段結合 (DNA ligation) 12
4.6 TOPO® 質體構築 (TOPO®cloning) 13
4.7 LR重組互換反應 (LR recombination) 13
4.8 大腸桿菌勝任細胞熱休克轉型作用 (Heat shock transformation of E. Coli) 13
4.9 電穿孔轉型作用之勝任細胞製備 (Competent cell preparation for electroporation) 13
4.10 電穿孔轉型作用 (Electroporation transformation) 14
4.11 質體萃取 (Plasmid purification) 14
5. 植物DNA萃取 (Plant DNA extraction) 15
6. 轉錄表現分析 15
6.1.1 植物RNA萃取 (Plant RNA extraction) 15
6.1.2 Trizol萃取法 (Trizol extraction) 15
6.2 反轉錄反應 (Reverse transcription) 16
6.3 半定量PCR (Semi-quantitative PCR, sqPCR) 17
6.4 定量PCR (Quantitative PCR, qPCR) 17
7. 病毒誘導短暫性大量表現 (Virus-mediated gene overexpression,VMGO) 18
8. 植物病原菌處理與病害反應分析 18
8.1 青枯病接種試驗 18
8.2細菌性軟腐病菌接種試驗 19
8.3細菌性斑點病接種試驗 19
8.4 細菌性褐斑病接種試驗 19
8.5 灰黴病接種試驗 20
8.6 晚疫病接種試驗 20
9. 植物PTI反應分析 21
9.1 番茄根部PTI反應 21
9.2 植物葉部PTI反應 21
9.3 訊息傳遞途徑抑制劑處理 (Inhibitor treatments) 22
10. 接種青枯病菌後番茄基因轉錄之檢測 23
11. 酵母體雜交 (Yeast two-hybrid) 23
11.1 質體構築 (Plasmid Construction) 23
11.2製備酵母菌勝任細胞 (Yeast Competent Cell Preparation) 23
11.3 酵母菌雙雜合系統 (Yeast two-hybrid system) 23
12. 雙分子螢光互補 (Bimolecular fluorescence complementation, BiFC) 24
12.1 質體構築 24
12.2 BiFC 24
13. 蛋白質轉譯表現 (Transgenic tobacco protein translation) 24
13.1 植物膜蛋白質萃取 (Plant membrane protein extraction) 24
13.2 蛋白質定量 25
13.3 蛋白質電泳 (SDS-PAGE) 25
13.4 西方墨點法 (Western blotting) 25
第三章 結果 28
1. 不同番茄品系之PTI與病害反應比較 28
2. 參與 H7996 PTI 反應之訊息傳遞路徑分析 28
4. 接種青枯病菌後之12g520與12g550表現 29
5. 抗病與感病番茄品系中12g550之序列分析 30
6. 12g520與12g550蛋白質在植物細胞中之座落位置 30
7. 12g520與12g550在PTI反應之角色 31
8. 12g520與12g550在茄科重要病害反應中之角色 31
9. 12g520與12g550相關PTI反應之訊息傳遞路徑 32
10. 12g520與12g550之可能交互作用蛋白質檢測 32
第四章 討論 33
1. 番茄品系H7996具強PTI反應與廣效抗病力 33
2. 12g520參與抗病之可能機制 34
3. 12g550參與抗病之可能機制 35
4. 結語 37
第五章 參考文獻 38
dc.language.isozh-TW
dc.title番茄Bwr12基因座內12g520與12g550參與防禦反應之
機制研究
zh_TW
dc.titleStudy on the mechanisms underlying tomato innate
immunity mediated by 12g520 and 12g550 in Bwr12 locus
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王肇芬,鄭貽生,林乃君,詹明才
dc.subject.keyword青枯病,青枯病菌,數量性狀位點,H7996,LRR,RLP,PTI,zh_TW
dc.subject.keywordBacterial wilt,Ralstonia solanacearum,QTL,Hawaii 7996,LRR,RLP,PTI,en
dc.relation.page140
dc.identifier.doi10.6342/NTU201800323
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-02-08
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
dc.date.embargo-lift2028-12-31-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  此日期後於網路公開 2028-12-31
9.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved