Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7629
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇(Chen-Wuing Liu)
dc.contributor.authorChia-Min Leeen
dc.contributor.author李佳旻zh_TW
dc.date.accessioned2021-05-19T17:48:21Z-
dc.date.available2029-09-21
dc.date.available2021-05-19T17:48:21Z-
dc.date.copyright2019-12-25
dc.date.issued2019
dc.date.submitted2019-12-10
dc.identifier.citationAdriano, D. (2001). Trace Elements in Terrestrial Environments Springer-Verlag, New York–Berlin–Heidelberg. In.
Aggett, J., & O'Brien, G. A. (1985). Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Environmental Science & Technology, 19(3), 231-238.
Ahmad, K. (2001). Report highlights widespread arsenic contamination in Bangladesh. The Lancet, 358(9276), 133.
Ali, W., Rasool, A., Junaid, M., & Zhang, H. (2019). A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environmental Geochemistry and Health, 41(2), 737-760.
Andjelkovic, I., Stankovic, D., Nesic, J., Krstic, J., Vulic, P., Manojlovic, D., & Roglic, G. (2014). Fe doped TiO2 prepared by microwave-assisted hydrothermal process for removal of As (III) and As (V) from water. Industrial & Engineering Chemistry Research, 53(27), 10841-10848.
Apostoli, P., Bartoli, D., Alessio, L., & Buchet, J. (1999). Biological monitoring of occupational exposure to inorganic arsenic. Occup Environ Med, 56(12), 825-832.
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373-380.
Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370-3377.
Bech, J., Poschenrieder, C., Llugany, M., Barceló, J., Tume, P., Tobias, F., . . . Vásquez, E. (1997). Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 203(1), 83-91.
Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science & Technology, 35(13), 2621-2626.
Borba, R., Figueiredo, B., Rawlins, B., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, 44(1), 39-52.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American chemical society, 60(2), 309-319.
Calabrese, E. J. (1989). Safe Drinking Water Act: CRC Press.
Carrillo-Chávez, A., Drever, J., & Martínez, M. (2000). Arsenic content and groundwater geochemistry of the San Antonio-El Triunfo, Carrizal and Los Planes aquifers in southernmost Baja California, Mexico. Environmental Geology, 39(11), 1295-1303.
Carter, C. B., & Williams, D. B. (2016). Transmission electron microscopy: Diffraction, imaging, and spectrometry: Springer.
Caruso, F., Mantellato, S., Palacios, M., & Flatt, R. J. (2017). ICP-OES method for the characterization of cement pore solutions and their modification by polycarboxylate-based superplasticizers. Cement and Concrete Research, 91, 52-60.
Chakraborti, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D., . . . Mukherjee, S. C. (2002). Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta, 58(1), 3-22.
Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., & Bhattacharjee, S. (2002). Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Research, 36(3), 625-632.
Chen, C.-J., Hsu, L.-I., Tseng, C.-H., Hsueh, Y.-M., & Chiou, H.-Y. (1999). Emerging epidemics of arseniasis in Asia. In Arsenic Exposure and Health Effects III (pp. 113-121): Elsevier.
Chen, C. J., Chen, C., Wu, M., & Kuo, T. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British journal of cancer, 66(5), 888.
Chen, Q., Du, G., Zhang, S., & Peng, L.-M. (2002). The structure of trititanate nanotubes. Acta Crystallographica Section B: Structural Science, 58(4), 587-593.
Chen, W., Parette, R., Zou, J., Cannon, F. S., & Dempsey, B. A. (2007). Arsenic removal by iron-modified activated carbon. Water Research, 41(9), 1851-1858.
Cheng, C., & Krishnardula, V. (2012). Flaking behaviour of GA IF and GA AHSS and its correlation with the adhesion strength and intefacial residual stress. La Metallurgia Italiana(11-12).
Chiou, H.-Y., Hsueh, Y.-M., Liaw, K.-F., Horng, S.-F., Chiang, M.-H., Pu, Y.-S., . . . Chen, C.-J. (1995). Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Research, 55(6), 1296-1300.
CN, S., & GF, P. (2003). Chemistry for Environmental Engineering and Science: Mc Graw Hill.
Deschamps, E., Ciminelli, V. S., & Höll, W. H. (2005). Removal of As (III) and As (V) from water using a natural Fe and Mn enriched sample. Water Research, 39(20), 5212-5220.
Filippi, M., Goliáš, V., & Pertold, Z. (2004). Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudný, and Kašperské Hory gold deposits, Bohemian Massif (CZ). Environmental Geology, 45(5), 716-730.
Fultz, B., & Howe, J. M. (2012). Transmission electron microscopy and diffractometry of materials: Springer Science & Business Media.
Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2009). Arsenic pollution sources. In Reviews of Environmental Contamination Volume 197 (pp. 17-60): Springer.
Garlick, G., & Wedepohl, K. (1969). Handbook of geochemistry.
Ge, X., Ma, Y., Song, X., Wang, G., Zhang, H., Zhang, Y., & Zhao, H. (2017). β-FeOOH nanorods/carbon foam-based hierarchically porous monolith for highly effective arsenic removal. ACS applied materials & interfaces, 9(15), 13480-13490.
Geucke, T., Deowan, S., Hoinkis, J., & Pätzold, C. (2009). Performance of a small-scale RO desalinator for arsenic removal. Desalination, 239(1-3), 198-206.
Goldman, R. H. (2017). Arsenic exposure and poisoning. UpToDate [Internet], 1-23.
Grant, J. (2003). In Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; Briggs, D.; Grant, JT, Eds. In: IM Publications: Chichester, UK.
Gupta, S. K., & Chen, K. Y. (1978). Arsenic removal by adsorption. Journal (Water Pollution Control Federation), 493-506.
Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Current Pollution Reports, 2(1), 68-89.
Hering, J. G., Chen, P.-Y., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, 123(8), 800-807.
Huang, Y., Ho, W., Lee, S., Zhang, L., Li, G., & Yu, J. C. (2008). Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir, 24(7), 3510-3516.
Ishida, Y., Doshin, W., Tsukamoto, H., & Yonezawa, T. (2015). Black TiO2 nanoparticles by a microwave-induced plasma over titanium complex aqueous solution. Chemistry Letters, 44(10), 1327-1329.
Jain, A., & Loeppert, R. H. (2000). Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. Journal of Environmental Quality, 29(5), 1422-1430.
Jain, A., Raven, K. P., & Loeppert, R. H. (1999). Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environmental Science & Technology, 33(8), 1179-1184.
Jain, R., Mathur, M., Sikarwar, S., & Mittal, A. (2007). Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 85(4), 956-964.
Juan Guo, X., Fujino, Y., Kaneko, S., Wu, K., Xia, Y., & Yoshimura, T. (2001). Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. In Molecular Mechanisms of Metal Toxicity and Carcinogenesis (pp. 137-140): Springer.
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of titanium oxide nanotube. Langmuir, 14(12), 3160-3163.
Kavan, L., O'Regan, B., Kay, A., & Grätzel, M. (1993). Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. Journal of Electroanalytical Chemistry, 346(1-2), 291-307.
Kumar, P. R., Chaudhari, S., Khilar, K. C., & Mahajan, S. (2004). Removal of arsenic from water by electrocoagulation. Chemosphere, 55(9), 1245-1252.
Lin, S., Lu, D., & Liu, Z. (2012). Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chemical Engineering Journal, 211, 46-52.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.
Liu, N., Chen, X., Zhang, J., & Schwank, J. W. (2014). A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 225, 34-51.
Liu, Z., Liu, C., Ya, J., & Lei, E. (2011). Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renewable Energy, 36(4), 1177-1181.
London, F. (1930). Über einige eigenschaften und anwendungen der molekularkräfte. Z. Phys. Chem. Abt, 222-251.
Manning, B. A., & Goldberg, S. (1997). Adsorption and stability of arsenic (III) at the clay mineral− water interface. Environmental Science & Technology, 31(7), 2005-2011.
Markovich, R. J., & Pidgeon, C. (1991). Introduction to Fourier transform infrared spectroscopy and applications in the pharmaceutical sciences. Pharmaceutical Research, 8(6), 663-675.
Matschullat, J. (2000). Arsenic in the geosphere—a review. Science of the Total Environment, 249(1-3), 297-312.
Min, J. H., & Hering, J. G. (1998). Arsenate sorption by Fe (III)-doped alginate gels. Water Research, 32(5), 1544-1552.
Modabberi, S., & Moore, F. (2004). Environmental geochemistry of Zarshuran Au-As deposit, NW Iran. Environmental Geology, 46(6-7), 796-807.
Mähler, J., Persson, I., & Herbert, R. B. (2013). Hydration of arsenic oxyacid species. Dalton Transactions, 42(5), 1364-1377.
Moore, J. N., & Woessner, W. W. (2003). Arsenic contamination in the water supply of Milltown, Montana. In Arsenic in ground water (pp. 329-350): Springer.
Neku, A., & Tandukar, N. (2003). An overview of arsenic contamination in groundwater of Nepal and its removal at household level. Paper presented at the Journal de Physique IV (Proceedings).
Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42.
Organization, W. H. (2008). Guidelines for drinking-water quality: Incorporating the first and second addenda. Geneva: World Health Organization.
Oscarson, D., Huang, P., Liaw, W., & Hammer, U. (1983). Kinetics of Oxidation of Arsenite by Various Manganese Dioxides 1. Soil Science Society of America Journal, 47(4), 644-648.
Oyarzun, R., Lillo, J., Higueras, P., Oyarzún, J., & Maturana, H. (2004). Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio–Tambo district) vs. geologic processes. Journal of Geochemical Exploration, 84(2), 53-64.
Patinha, C., Da Silva, E. F., & Fonseca, E. C. (2004). Mobilisation of arsenic at the Talhadas old mining area—Central Portugal. Journal of Geochemical Exploration, 84(3), 167-180.
Peng, F. F., & Di, P. (1994). Removal of arsenic from aqueous solution by adsorbing colloid flotation. Industrial & Engineering Chemistry Research, 33(4), 922-928.
Pham, H. V., Pham, T. K. T., & Dao, V. N. (2018). Arsenic contamination in groundwater in the Red river delta, Vietnam-a review. Vietnam Journal of Science, Technology and Engineering, 60(1), 23-27.
Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391-396.
Remškar, M., & Mrzel, A. (2004). High-temperature fibres composed of transition metal inorganic nanotubes. Current Opinion in Solid State and Materials Science, 8(2), 121-125.
Shih, C.-J., & Lin, C.-F. (2003). Arsenic contaminated site at an abandoned copper smelter plant: waste characterization and solidification/stabilization treatment. Chemosphere, 53(7), 691-703.
Shih, M.-C. (2005). An overview of arsenic removal by pressure-drivenmembrane processes. Desalination, 172(1), 85-97.
Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619.
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and Environmental Safety, 112, 247-270.
Smith, C., Livingston, S., & Doolittle, D. (1997). An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food and Chemical Toxicology, 35(10-11), 1107-1130.
Smith, E., Smith, J., Smith, L., Biswas, T., Correll, R., & Naidu, R. (2003). Arsenic in Australian environment: an overview. Journal of Environmental Science and Health, Part A, 38(1), 223-239.
Tsai, C.-C., & Teng, H. (2004). Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials, 16(22), 4352-4358.
Tseng, W.-P. (1977). Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environmental Health Perspectives, 19, 109-119.
United States Environmental Protection Agency (USEPA) (2018) Integrated Risk Information System (IRIS).
Wang, G., Huang, Y., Gang, J., Wang, S., Xiao, B., Yao, H., . . . Liu, K. (2000). Endemic arsenism, fluorosis and arsenic-fluoride poisoning caused by drinking water in Kuitun, Xinjiang. Chinese Medical Journal, 113(6), 524-524.
Webster, J. G., & Nordstrom, D. K. (2003). Geothermal arsenic. In Arsenic in ground water (pp. 101-125): Springer.
Williams, P., Raab, A., Feldmann, J., & Meharg, A. (2007). Market basket survey shows elevated levels of As in South Central US processed rice compared to California: consequences for human dietary exposure. Environmental Science & Technology, 41(7), 2178-2183.
Williams, P. N., Villada, A., Deacon, C., Raab, A., Figuerola, J., Green, A. J., . . . Meharg, A. A. (2007). Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environmental Science & Technology, 41(19), 6854-6859.
Yi, X., Gu, X.J., Hou, Y.Q., Liu, X.H., & Xie, J. (2010). Current Situation and Evaluation of Soil Environmental Quality for HeavyMetals in Jinghuiqu Irrigation District of Shaanxi Province. Bulletin of Soil and Water Conservation, 3.
Yuan, Z.-Y., & Su, B.-L. (2004). Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 241(1-3), 173-183.
Zhang, G.-S., Qu, J.-H., Liu, H.-J., Liu, R.-P., & Li, G.-T. (2007). Removal mechanism of As (III) by a novel Fe− Mn binary oxide adsorbent: oxidation and sorption. Environmental Science & Technology, 41(13), 4613-4619.
Zhang, G., Qu, J., Liu, H., Liu, R., & Wu, R. (2007). Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Research, 41(9), 1921-1928.
Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2009). P25-graphene composite as a high performance photocatalyst. ACS nano, 4(1), 380-386.
Zhang, H., Ma, D., & Hu, X. (2002). Arsenic pollution in groundwater from Hetao Area, China. Environmental Geology, 41(6), 638-643.
Zhang, M., Bando, Y., & Wada, K. (2001). Sol-gel template preparation of TiO2 nanotubes and nanorods. Journal of materials science letters, 20(2), 167-170.
Zhu, Y.-G., Yoshinaga, M., Zhao, F.-J., & Rosen, B. P. (2014). Earth abides arsenic biotransformations. Annual Review of Earth and Planetary Sciences, 42, 443-467.
行政院環保署. (1998) 飲用水水質標準.
朱瑾, 樓子墨, 王卓行, & 徐新華. (2014). 鐵錳氧化物/碳基複合材料的製備及其對水中砷的去除. 化學進展, 26(09), 1551-1561.
林財富. (2000). 淨水場砷去除技術之選擇. In: 自來水會刊.
陳培源, 劉德慶, &黃怡楨.(2004)臺灣之礦物. 臺灣地質系列第14號.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7629-
dc.description.abstract本研究將二氧化鈦(P25)搭配三種鐵氧化物(FeO(OH)、α-Fe2O3、γ-Fe2O3)及水合二氧化錳(MnO2-H2O)於150℃下進行水熱合成,製備出二氧化鈦奈米吸附材,本研究針對TNT(100 wt.% P25)、α-Fe(10)(90 wt.% P25 + 10 wt.% α-Fe2O3)、FeO(OH)(10)(90 wt.% P25 + 10 wt.% FeO(OH))、γ-Fe(5)(95 wt.% P25 + 5 wt.% γ-Fe2O3)、Mn(2.5) (92.5 wt.% P25 + 5 wt.% γ-Fe2O3+ 2.5 wt.% MnO2)等五種奈米吸附材進行比表面積(BET)、傅立葉轉換紅外光譜(FTIR)、穿透式電子顯微鏡(TEM)、X射線光電子能譜儀(XPS)、X-ray繞射分析儀(XRD)等物性分析,並進行水中砷污染去除試驗,藉此比較各材料於相異毫克數、砷濃度與pH值下對三價砷及五價砷之吸附效率。研究結果顯示鐵摻雜較容易使吸附材結構形成管狀,提高吸附材之比表面積,經過水熱反應後奈米吸附材比表面積較原材料P25高出4-6倍,而鐵錳摻雜之比表面積又較無摻雜TNT高出18-28%。γ鐵摻雜能夠使吸附材形成更多氧空缺,這些結構缺位更容易使砷酸根吸附。20 mg之TNT、α-Fe(10)、FeO(OH)(10)、γ-Fe(5)、Mn(2.5)對15 ppm(100 ml)五價砷之吸附效果分別約為32%、33%、33%、38%及36%;20 mg之TNT、α-Fe(10)、FeO(OH)(10)、γ-Fe(5)、Mn(2.5)對15 ppm(100 ml)三價砷之吸附效果分別約為15%、16%、16%、19%及20%,所有材料皆於60分鐘達95%吸附飽和,而在不同pH值條件下對五價砷以及三價砷去除效率隨著pH值增加而降低。Mn(2.5)在避光吸附下對15 ppm之三價砷具38%之氧化效果,γ-Fe(5)具有最佳之吸附效率且粉末具有磁性有助於粉末快速沉澱及回收再利用。zh_TW
dc.description.abstractIn this study, Fe/Mn-doped TiO2 nanotubes were synthesized via hydrothermal process at 150oC by using P25, FeO(OH),α-Fe2O3, γ-Fe2O3, and MnO2-H2O at different ratios (0 wt.%, 2.5 wt.%, 5 wt.%, and 10 wt.%). After hydrothermal synthesis, physical properties were examined by using Brunauer-Emmett-Teller surface area analyzer (BET), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM), X-Ray Photoelectron Spectroscopy (XPS), and X-ray diffraction analysis (XRD). TNT, α-Fe(10), FeO(OH)(10), γ-Fe(5), and Mn(2.5) were applied to remove arsenate (As5+) and arsenite (As3+) in the aqueous. As5+ and As3+ adsorption tests were carried out at different sample weight, arsenic concentration, and pH conditions. Experimental results show that higher specific surface area and better tubular shape were observed after hydrothermal synthesis. Specific surface area of Fe/Mn-doped material increases by 18%-28%, compared with TNT without Fe/Mn-doped. A more structural vacancy was observed in γ-Fe-doped materials, which could increase the arsenic adsorption efficiency. The adsorption efficiency of per 20 mg TNT, α-Fe(10), FeO(OH)(10), γ-Fe(5) and Mn(2.5) for 15 ppm (100 ml) arsenic aqueous are 32%, 33%, 33%, 38% and 36%, respectively. In the same test condition, the adsorption efficiencies of those materials for As3+ are 15% (TNT), 16% (α-Fe(10)), 16% (FeO(OH)(10)), 19% (γ-Fe(5)), and 20% (Mn(2.5)), respectively. In a dark experiment, Mn(2.5) can oxidize 38% As3+ into As5+. γ-Fe(5) is the best material for arsenic adsorption compared to the other material in this study. Moreover, the magnetic γ-Fe(5) properties of the powder contribute to precipitate and recycle more easily.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:48:21Z (GMT). No. of bitstreams: 1
ntu-108-R06622028-1.pdf: 3413862 bytes, checksum: 0683fd4c25d54b23b4ab4479851ba1b7 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1研究緣起 1
1.2研究動機 2
1.3研究目的 3
第二章 文獻回顧 4
2.1砷簡介 4
2.1.1砷的來源及分布 4
2.1.2物化特性及毒理性質 6
2.1.3去除方法 7
2.2 吸附機制 9
2.3二氧化鈦之基本特性 10
2.3.1晶體結構 10
2.4 奈米鈦管之簡介 11
2.4.1水熱合成法 12
2.4.2合成機制 13
2.5 鐵錳氧化物摻雜 14
2.6吸附模式 17
2.7 鐵摻雜水熱合吸附砷機制 19
第三章 材料與方法 21
3.1 實驗架構 21
3.2 實驗材料與儀器 22
3.3 實驗流程 25
3.3.1水合二氧化錳製備 25
3.3.2 奈米鈦管製備 25
3.4 吸附實驗 26
3.4.1相異克數吸附 26
3.4.2等溫吸附 26
3.4.3動力吸附 26
3.4.4不同pH吸附 26
3.4.5 錳氧化能力試驗 26
3.5 儀器原理 27
3.5.1傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR) 27
3.5.2穿透式電子顯微鏡(Transmission electron microscope, TEM) 28
3.5.3 X-射線繞射分析儀(X-ray diffraction spectroscopy, XRD) 29
3.5.4 X-射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 30
3.5.5 感應耦合電漿發射光譜儀 (Inductively couple plasma optical emission spectrometry, ICP-OES) 31
3.5.6 比表面積及孔隙分布分析(High resolution surface area and porosimetry analyser) (ASAP/BET) 33
第四章 實驗結果與討論 38
4.1 物性分析 38
4.1.1 比表面積分析(BET) 38
4.1.2穿透式電子顯微鏡(TEM)影像 41
4.1.3傅立葉轉換紅外光譜(FTIR) 44
4.1.4 X-射線光電子能譜(XPS) 45
4.1.5 X-射線繞射分析儀(XRD) 49
4.2 五價砷吸附 51
4.2.1動力吸附 51
4.2.2 相異克數吸附 52
4.2.3 等溫吸附 55
4.2.4 不同pH吸附 61
4.3三價砷吸附 64
4.3.1 動力吸附 64
4.3.2 等溫吸附 65
4.3.3 不同pH吸附 71
4.4 錳氧化能力試驗 73
4.5相似吸附材比較 75
4.6 綜合討論 78
第五章 結論與建議 79
5.1 結論 79
5.2 建議 81
參考文獻 82
dc.language.isozh-TW
dc.title鐵錳摻雜二氧化鈦奈米管對砷之去除zh_TW
dc.titleRemoval of Arsenic by Iron/Manganese-doped Titanium Dioxide Nanotubesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee席行正(Hsing-Cheng Hsi),范致豪(Chih-Hao Fan),蔡政諺(Cheng-Yen Tsai)
dc.subject.keyword砷,奈米鈦管,鐵改質,鐵錳改質,吸附,zh_TW
dc.subject.keywordarsenic,TiO2 nanotubes,iron modification,iron/manganese modification,adsorption.,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201904162
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-12-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2029-09-21-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  此日期後於網路公開 2029-09-21
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved