請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76286
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 黃斌 | zh_TW |
dc.date.accessioned | 2021-07-01T08:19:53Z | - |
dc.date.available | 2021-07-01T08:19:53Z | - |
dc.date.issued | 1997 | |
dc.identifier.citation | 林綠瑩 1989 低溫逆境對綠豆白化幼苗生長、根尖顯微構造,及細胞膜、液胞膜的影響 國立臺灣大學植物研究所碩士論文 馬淑芳 1988 低溫逆境對耐寒和不耐寒植物之外部形態、內部微細構造和蛋白質合成比較 國立臺灣大學植物研究所碩士論文 郭金龍 1991 低溫逆境下植物體氧化還原?、蔗糖還原?活性的改變 國立臺灣大學植物研究所碩士論文 郭惠芬 1996 酒精逆境對大豆幼苗的影響及胺基酸類似物誘導大豆第一族低分子量熱休克蛋白質生合成之定量分析 國立臺灣大學植物研究所碩士論文 張孟瑤 1989 低溫馴化對綠豆幼苗生理與生化改變的影響 國立臺灣大學植物研究所碩士論文 楊敏宗 1990 低溫逆境下綠豆白化幼苗之RNA Polymerase活性與蛋白質合成之探討 國立臺灣大學植物研究所碩士論文 劉炫亨 1993 綠豆幼苗經溫度調馴後在溫度逆境下形態及生理之變化 國立臺灣大學植物研究所碩士論文 Alberdi, M., and L.J. Corcuera 1991 Cold acclimation in plants. Phytochemistry 30: 3177-3184 Anderson, J.V., Q.B. Li, D.W. Haskell, and C.L. Guy 1994 Structural organization of spinach nedoplasmic reticulum-Luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 104:1359-1370 Boston, R.S., P.V. Viitanen, and E. Vierling 1996 Molecular chaperones and folding in plants. Plant Mol.Biol. 32:191-222 Burke, M.J., L.V. Gusta, H.A. Quamme, C.J. Weiser, and P.H. Li 1976 Freezing and injury in plants. Annu.Rev.Plant Physiol. 27:507-528 Cabane, M., P. Calvet, P. Vincens, and A.M. Boudet 1993 Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP70) family. Planta 190:346-353 Chen, Y.M., H.F. Liu, and C.C. Lin 1991 Chilling stress effects on the growth, mitochondrial activity and protein synthesis in etiolated mungbean seedlings. Taiwania 36:277-290 Chen, Y.Y., and C.H. Lin 1993 Effect of LAB173711, and ABA analogue, on low-temperature resistance to mungbean seedlings. J. plant growth reg. 12:51-55 Didierjean, L., P. Frendo, W. Nasser, G. Genot, and J. France 1996 Heavy-metal-responsive genes in maize: identification and comparison of their expression upon various forms of abiotic stress. Planta 199:1-8 Filek, M., and J. Koscielniak 1995 The effect of chilling temperature on the permeability of membranes to K+, Mg2+, Ca2+ ions and on the electrical potential of leaves in the seedling of maize (Zea mays L.). J. Agro. Crop Sci. 174:205-212 Foyer, C.H., M. Lelandais, K.J. Kunert 1994 Photooxidative stress in plants. Physiol. Plant 92:696-717 Frenkl, C. and A. Erez 1996 Induction of chilling tolerance in cucumber (Cucumis sativus) seedlings by endogeneous and applied ethanol. Physiol. Plant 96:593-600 Gilmour, S.J., N.N. Artus, M.F. Thomashow 1992 cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18:13-21 Gilmour, S.J., R.D. Hajela, and M.F. Thomashow 1988 Cold acclimation in Arabidopsis thaliana. Plant Physiol. 87:745-750 Graham, D., and B.D. Patterson 1982 Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu.Rev.Plant Physiol. 33:347-372 Guy, C.L., J.L.A. Huber, and S.C. Huber 1992 Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol. 100:502-508 Guy, C.L., K.J. Niemi, and R. Brambl 1985 Altered gene expression during cold acclimation of spinach. Proc.Natl.Acad.Sci.USA 82:3673-3677 Guy, C.L., N. Plesofsky-Vig and R. Brambl 1986 Heat shock protects germinating conidiospores of Nuurospora crassa aganist freezing injury. J. Bacteriol 167:124-129 Guy, C.L., R.L. Hummel, and D. Haskell 1987 Induction of freezing tolerance in spinach during cold acclimation. Plant Physiol. 84:868-871 Guy, C.L., and D. HAskell 1987 Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol. 84:872-878 Guy, M.G. 1989 Phospholipid, sterol composition and ethylene production in relation to choline-induced chilling tolerance in mungbean (Vigna radiata L.Wilcz.) during a chill-warm cycle. J.Exp. Bot. 40:369-374 Heikkila, J.J., J.E.T. Papp, G.A. Schultz, and J.D. Bewley 1984 Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid, and wounding. Plant Physiol. 76:270-274 Houde, M., J.F. Laliberte, E. Rassart, R.S. Dhindsa, and F, Sarhan 1991 Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Platn Physiol. 99:1381-1387 Hsieh, M.H., J.T. Chen, T.L. Jinn, Y.M. Chen, and C.Y. Lin 1992 A class of soybean low molecular weight heat shock proteins: immunological study and quantitation. Plant Physiol. 99: 1279-1284 Hughes, M.A., and M.A. Dunn 1996 The molecular biology of plant acclimation to low temperature. J.Exp.Bot. 47:291-305 Jinn, T.L., S.H. Wu, C.H. Yeh, M.H. Hsieh, Y.C. Yeh, Y.M. Chen, and C.Y. Lin 1993 Immunological kinship and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol. 34:1055-1062 Jinn, T.L., Y.M. Chen, C.Y. Lin 1995 Characterization and physiological function of class I low-molecular-mass heat-shock protein complex in soybean. Plant Physiol. 108:693-701 Kawata, T., and S. Yoshida 1988 Alteration in protein synthesis in vivo in chilling sensitive mungbean hypocotyls caused by chilling stress. Plant Cell Physiol. 29:1423-1427 Kazuoka, T., and K. Oeda 1992 Heat-stable COR (cold-regulated) proteins associated with freezing tolerance in spinach. Plant Cell Physiol. 33:1107-1114 Key, J.L., C.Y. Lin, and Y.M. Chen 1981 Heat shock proteins of higher plants. Proc.Natl.Acad.Sci.USA 78:3526-3530 Khan, A.A., S. Ilyas, W. Ptasznik 1995 Intergrating low water potential seed hydration with other treatments to improve cold tolerance. Annu Bot. 75:13-19 Krishna在, P., M. Sacco, J.F. Cherutti, and S. Hill 1995 Cold-induced acclimation of hsp90 transcripts in Brassica napus. Plant Physiol. 107:915-923 LaFayette, P.R., R.T. Nagao, K. O'Grady, E. Vierling and J.L. Key 1996 Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean organelles. Plant Mol.Biol. 30:159-169 Lafuente, M.T., A. Belver, M.G. Guye, and M.E. Saltveit, Jr. 1991 Effect of temperature conditioning on chilling injury of cucumber cotyledons. Plant Physiol. 95:443-449 Lammli, U.K. 1970 Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:213-216 Lee, Y.L., P.FL. Chang, K.W. Yeh, T.L. Jinn C.CS. Kung, W.C. Lin, Y.M. Chen, and C.Y. Lin 1995 Cloning and characterization of a cDNA encoding an 18.0-kDa class-I low-moleculare-weight heat-shock protein from rice. Gene 165:223-227 Levitt, J. 1980 Response of plants to enviromental stress. vol 1 chilling, freezing and high temperature stress. Academic Press, New York pp497-499 Lin, C., W.W. Guo, E. Everson, and M.F. Thomashow 1990 Cold acclimation in Arabidopsis and wheat. Plant Physiol. 94:1078-1083 Lindquist, S. 1986 The heat shock response. Annu.Rev.Biochem. 55:1151-1191 Lindquist, S., and E.A. Craig 1988 The heat shock proteins. Annu.Rev.Genet 22: 631-677 Lurie, S., A. Handros, E. Fallike, and R. Shapira 1996 Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol. 110:1207-1214 Lyons, J.M. 1973 Chilling injury in plants. Annu.Rev.Plant Physiol. 24:445-466 Ma, S.F., C.Y. Lin., and Y.M. Chen 1990 Comparative studies of chilling stress on alterations of chloroplast ultrastructure and protein synthesis in the leaves of chilling sensitive (mungbean) and insensitive (pea) seedlings. Bot.Bull.Academia Sinica 31:263-272 Melcarek, P.K., and G.N. Brown 1977 Effects of chill stress on prompt and delayed chlorophyll fluorescence from leaves. Plant Physiol. 61:639-643 Mohapatra, S.S., R.J. Poole., and R.S. Dhindsa 1987 Changes in protein patterns and translatable messenger RNA populations during cold acclimation of alfalfa. Plant Physiol. 84:1172-1176 Morhapatra, S.S., L. Wolfraim, R.J. Poole, and R.S. Dhindsa 1989 Molecular cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol. 89:375-380 Monroy, A.F., and R.S. Dhindsa 1995 Low-temperature signal transduction induction of cold acclimation-specific genes of alfalfa by calcium at 25℃. Plant Cell 7:321-331 Moon, B.Y., S.I. Higashi, Z. Gombos and N. Murata 1994 Unsaturation of the menbrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in the transgenic tobacco plant. Proc.Natl.Acad. Sci. USA 92(14): 6219- 6223 Moynihan, M.R., A. Ordentlich, I. Raskin 1995 Chilling-induced heat evolution in plants. Plant Physiol. 108: 995-999 Muthalif, M.M., L. Rowland 1994 Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol. 104:1439-1447 Neven, L.G., D.W. Haskell, A. Hofig, Q.B. Li, and C.L. Guy 1993 Characterization of spinach gene responsive to low temperature and water stress. Plant Mol. Biol. 21:291-305 Neven, L.G., D.W. Haskell, C.L. Guy, N. Denslow, P.A. Klein, L.G. Green, and A. Silverman 1992 Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold. Plant Physiol. 99:1362-1369 O'Farrell, P.H. 1975 High resolution two-dimentional electrophoresis of proteins. J. Biochem. 250:4007-4021 Olien, C.L. 1967 Freezing stress and survival. Annu.Rev.Plant Physiol. 18:387-408 Prasad, T.K., M.D. Anderson, and C.R. Stewart 1995 Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Plant Physiol. 108:1597-1605 Ristic, Z., D.J. Gifford, and D.D. Cass 1991 Heat shock proteins in two lines of Zea mays L. that differ in drought and heat resistance, Plant Physiol. 97:1430-1434 Roberston, A.J., L.V. Gusta, M.J.T. Reaney, and M. Ishikawa 1988 Identification of proteins correlated with increased freezing tolerance in bromegress (Bromus inermis Ley.cv Manchar) cell cultures. Plant Physiol. 86:344-347 Sabehat, A., D. Weiss., and S. Lurie 1996 The correlation between heat-shock protein acclimation and persistence and chilling tolerance in tomato fruit. Plant Physiol. 110:531-537 Sachs, M.M., and T.HD. Ho 1986 Alteration of gene expression during environmental stress in plants. Annu.Rev.Plant Physiol. 37:167-178 Sonoike, K. 1996 Photoinhibition of photosystem I: its physiological signification in the chilling sensitivity of plants. Plant Cell Physiol. 27:239-247 Steponkus, P.L. 1984 Role of the plasma membrane in freezing injury and cold acclimation. Annu.Rev.Plant Physiol. 35:543-584 Takahashi, R., N. Joshee, and Y. Kitadawa 1994 Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol.Biol. 26:339-352 Tseng, T.S., K.W. Yeh, C.H. Yeh, F.C. Chang, Y.M. Chen, C.Y. Lin 1992 Two rice (Oryza sativa) full-length cDNA clones encoding low-molecular-weight heat shock proteins. Plant Mol. Biol. 18:963-965 Vierling, E. 1991 The roles of heat shock proteins in plants. Annu.Rev.Plant Physiol. Plant Mol.Biol. 42:579-620 Warren, G., R. Mckown, A. Marin, and R. Teutonico 1996 Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 111:1011-1019 Welch, W.J. 1993 How cells respond to stress. Sci. American 268:56-64 Wolfraim, L.A., R. Langis, H. Tyson, amd R.S. Dhindsa 1993 cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas 18, of alfalfa (Medicago falcata) cells. Plant Physiol 101:1275-1282 Wolfraim, L.A., and R. Dhindsa 1993 Cloning and sequencing of the cDNA for cas 17, a cold acclimation-specific gene of alfalfa. Plant Physiol. 103:667-668 Yoshida, S. 1991 Chilling-induced inactivation and its recovery of tonoplast H+-ATPase in mungbean cell suspension cultures. Plant Physiol. 95:456-460 Yoshida, S. 1995 Low-temperature-induced alkalization of vacuoles in suspension-cultured cells of mungbean (Vigna radiata L. Wilczk). Plant Cell Physiol. 36: 1075-1079 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76286 | - |
dc.description.abstract | 綠豆?不耐低溫性植物,將其白化幼苗放在低溫4℃處理12小時後,便會有延緩生長的現象;而在處理2天後,進行回溫時則會有相當明顯的傷害出現並且死亡。 將白化幼苗以40℃進行短暫熱休克前處理30分鐘,便可明顯降低其在低溫下的傷害且能夠在回溫後繼續生長,而隨著熱休克時間的增加至2小時,其在低溫逆境下可耐到長達12天以上的時間。 綠豆白化幼苗在高溫40℃處理2小時後,經35S-methionine放射性元素標定、雙向電泳的分析與熱休克蛋白質抗體反應,發現有一群高、中、低分子量熱休克蛋白質被誘導出來,而由抗體所辨識的一群19-21kD第一族低分子量熱休克蛋白質會隨熱休克時間不同而生成量不同;在致死溫度(4℃)與冷馴化溫度(10℃)處理下這群19-21kD蛋白質並不被誘導生成。此蛋白質的量在常溫(28℃)下可維持約48小時,至72小時則完全消失;在4℃低溫下可維持超過12天。除了正面證明誘導的熱休克蛋白質愈多,其幼苗在低溫下的忍受力(生長勢)愈強外,亦反面證明此低分子量熱休克蛋白質消失時,幼苗便會喪失其低溫耐性。 以抗大腸桿菌60kD與抗酵母菌60kD熱休克蛋白質抗體檢測反應,發現在綠豆幼苗處理過程中,並沒有與抗體性質相似的中分子量熱休克蛋白質被誘導出來。 藉由熱休克處理來增加低溫忍受性的研究在過去已有報導,但均未直接針對低分子量熱休克蛋白質的角色進行探討,是以本研究已確立了綠豆第一族低分子量熱休克蛋白質在低溫下的生理特性,並證明其與綠豆幼苗耐冷性間的相關性。 | zh_TW |
dc.description.abstract | The growth of etiolated mungbean seedlings (Vigna radiata L. cv. Tainan No.5), a chilling-sensitive crop, was significantly inhibited by low temperature (4℃) treatment of 12 hr, and a significant injury appeared 2 days after low temperature treatment followed by 1 day recovery at 28℃. Pretreatment of 40℃ could improve chilling tolerance of mungbean seedlings, and a set of isotope labeled HSPs was separated by 1-D gel electrophoresis. A group of 19-21kD class I low-molecular-weight HSPs was recognized by westerrn blotting using rabbit anti-soybean class I low-molecular-weight heat-shock protein antibody. This group of 19-21kD HSPs was only induced by high temperature at 40℃ and reached the maximum level at 2 hr. The half life of these 19-21kD HSPs were about 2 days at 28℃, but the amount of proteins maintained at high level at 4℃ for 12 days. The more of the 19-21kD HSPs, the more chilling tolerance was observed. When these 19-21kD HSPs were degraded completely, the plant has lost its chilling tolerance. Using E. coli and yeast 60kD HSPs antibodies for western blot analysis, no HSPs ranging in 80kD to 40kD in mungbean seedlings were detected. The roles of each group of HSPs are still yet to be clearfied. Furthermore, the chilling tolerance observed in our mungbean system could be achieved by multiple HSPs but not only a single HSPs. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:19:53Z (GMT). No. of bitstreams: 0 Previous issue date: 1997 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………i 英文摘要…………………………………………………ii 前 言………………………………………………………1 藥品縮寫…………………………………………………9 材料與方法………………………………………………10 結 果……………………………………………………19 討 論……………………………………………………22 圖 表……………………………………………………29 參考文獻…………………………………………………46 | |
dc.language.iso | zh-TW | |
dc.title | 綠豆第一族低分子量熱休克蛋白質與低溫耐性之探討 | zh_TW |
dc.title | The Studies on Class I Low-molecular-weight Heat Shock Proteins and Chilling Tolerance in Mungbean (Vigna radiata L.) | en |
dc.date.schoolyear | 85-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 59 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。