請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76283
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 邱啟洲 | zh_TW |
dc.date.accessioned | 2021-07-01T08:19:51Z | - |
dc.date.available | 2021-07-01T08:19:51Z | - |
dc.date.issued | 1997 | |
dc.identifier.citation | 1.郭惠芬(1996)酒精逆境對大豆幼苗的影響及胺基酸類似物誘導大豆第一族低分子量熱休克蛋白質生合成之定量分析。國立臺灣大學植物科學研究所碩士論文。 2.靳宗洛(1995)大豆第一族低分子量熱休克蛋白質之研究:純化、定性、生理生化功能分析及其免疫標定。國立臺灣大學植物科學研究所博士論文。 3. Ananthan, J., Goldberg, A. L. and Voellmy, R. (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522-524. 4. Bardwell, J.C.A. and Craig, E.A. (1987) Major heat shock gene of Drosophila and Escherichia coli heat inducible dnaK gene are homologus. Proc. Natl. Acad. Sci. USA 84:5177-5181. 5. Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to environment stress. Plant Cell 7:1099-1111. 6. Craig, E.A., Gambill, B.D. and Nelson, R.J. (1993) Heat shock proteins: Molecular chaperone of protein biogenesis. Microbiol. Rev. 59:402-414. 7. Craig, E.A., Kramer, J. and Kosic, S.J. (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84:4516-4160. 8. Daniels, C.J., McKee A.H.Z. and Doolittle, W.F. (1984) Archaebacteria heat shock proteins. EMBO J. 3:745-749. 9. DeRocher, A.E., Helm, K.W., Lauzon, L.M. and Vierling, E. (1991) Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol. 96:1038-1047. 10. DiDomenico, B.J., Bugaisky, G.E. and Limdquist, S. (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31:593-603. 11. Hichey, E., Brandon, S.E., Potter, R., Stein, J. and Weber, L.A. (1986) Sequence and organization of gene encoding the human 27 kDa heat shock protein. Nucleic Acid Res. 14:4127-4145. 12. Hsieh, M.H., Chen, J.T., Jinn, T.L., Chen, Y.M. and Lin, C.Y. (1992) A class of soybean low molecular weight heat shock proteins. Plant Physiol. 99:1279-1284. 13. Jinn, T.L., Yeh, Y.C., Chen, Y.M. and Lin, C.Y. (1989) Stabilization of soluble proteins in vitro by heat shcok proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol. 30:463-469. 14. Jinn, T.L., Chen, Y.M. and Lin, C.Y. (1995) Characterization and physiological function of class I low-molecular-mass heat-shock protein complex in soybean. Plant Physiol. 108:693-701. 15. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. 16. LaFayette, P.R., Nagao, R.T., O'Grady, K., Vierling, E. and Key, J.L. (1996) Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol. Biol. 30:159-169. 17. Lee, Y.R.J., Nagao, R.T., Lin, C.Y. and Key, J.L. (1996) Induction and regulation of heat-shock gene expression by amino acid analog in soybean seedlings. Plant Physiol. 110: 241-248. 18. Lee, G.J., Roseman, A.M., Saibil, H.R. and Vierling, E. (1997) A small heat shock protein stably binds heat-denatured model substrates can maintain a substrate in a folding-competent state. EMBO J. 16:659-671. 19. Levitt, L. (1980) Response of Plants to Environmental Stress. Vol. 1. Chilling, Freezing and High Temperature Stresses. Academic Press, New York.. 20. Li, G.C. and Hahn, G.M. (1978) Ethanol-induced tolerance to heat and to adriamycin. Nature 274:699-701. 21. Li, G.C. and Laszlo, A. (1985) Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage. J. Cell Physiol. 122:91-97. 22. Li, G.C. and Werb, Z. (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci. USA 79:3218-3222. 23. Li, G.C., Shiu, E.C. and Hahn, G.M. (1980) Similarities in cellular inactivation by hyperthermia or by ethanol. Radiat. Res. 82:257-268. 24. Lin, C.Y., Roberts, J.K. and Key, J.L. (1984) Acquisition of thermotolerance in soybean seedlings. Plant Physiol. 74:152-160. 25. Lindquist, S. and Craig, E.A. (1988) The heat-shock proteins. Annu. Rev. Genet. 22:631-677. 26. Liu, C.S., Lin, C.C., Chen, J.M., Chang, C.H. and Lo, T.B. (1993) A convenient amino acid analysis of proteins electroblotted onto polyvinylidene difluoride membrane from sodium dodecyl sulfate-polyacrylamide gel - a direct in situ derivatization of amino acids after gas-phase hydrolysis. J. Chin. Biochem. Soc. 17:12-19. 27. Nagao, R.T. and Key, J.L. (1989) Heat shock proteins genes of plant. In Cell Culture and Somatic Cell Genetics of Plants. Academic Press. Vol. 6 pp.297-328. 28. Neumann, D., Nover, L. and Scharf, K.D. ed. (1989) Heat Shock and Other Stress Response Systems of Plants. Springer-verlag, Berlin. 29. Nover, L. ed. (1991) Heat Shock Response. CRC press, Boca Raton. 30. Nover, L., Scharf, K., and Neumann, D. (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures. Mol. Cell Biol. 3:1648-1655. 31. Nover, L., Scharf, K., and Neumann, D. (1989) Cytoplasmic heat shock granules were formed from precursor particles and contain a specific set of mRNA. Mol. Cell Biol. 9:1298-1308. 32. O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021. 33. Parsell, D.A. and Lindquist, S. (1993) The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27:437-496. 34. Parsell, D.A., Kowal, A.S., Singer, M.A. and Lindquist, S. (1994) Protein disaggregation mediated by heat-shock protein HSP 104. Nature 372:475-477. 35. Petko, L. and Lindquist, S. (1986) HSP26 is not required for growth at high temperature, nor for thermotolerance, spore development, or germination. Cell 45: 885-894. 36. Rittossa, F. (1962) A new puffing pattern induced by temperature shock and DEP in Drosophila. Experientia 18:571-573. 37. Sanchez, Y., Taulien, J., Borkovich, K.A. and Lindquist, S. (1992) Hsp 104 is required for tolerance to many formss of stress. EMBO J. 11:2357-2364. 38. Schlesinger, M.J., Ashburner, M. and Tissieres, A. (1982) Heat Shock from Bacteria to Man. Cold Spring Harbor Laboratory Press, New York. 39. Schlesinger, M.J., Santoro, M.G. and Garaci, E., ed. (1990) Stress Proteins: Induction and Function. Springer-verlag, Berlin. 40. Steponkus, P.L. and Lanphear, F.O. (1967) Refinement of the triphenyl tetrazoliumchloride method of determining cold injury. Plant Physiol. 42:1423-1426. 41. Takeuchi, T. and Prockop, D.J. (1969) Biogenesis of abnormal collagens with amino acid analogues. I. Incorporation of L-azetidine-2-carboxylic acid and cis-4-fluoro-L-proline into protocollagen and collagen. Biochim. Biophys. Acta. 175:142-155. 42. Tissieres, A., Mitchell, H.K. and Tracy, U.M (1974) Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 84:389-398. 43. Towill, L.E. and Mazur, P. (1974) Studies on the reduction of 2,3,5-triphenyltetrazolium chloride as a viability assay for plant tissue culture. Can. J. Bot. 53:1097-1102. 44. Vierling, E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620 45. Waters, E.R., Lee, G.J. and Vierling, E. (1995) Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Biol. 47:1-14. 46. Welch, W.J. and Suhan, J.P. (1985) Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles; cytoskeleton, and nucleoli, and appearance of internuclear actin filaments in rat fibroblasts. J. Cell. Biol. 101:1198-1211. 47. Zagari, A., Palmer, K.A., Gibson, K.D., Nemethy, G. and Scheraga, H.A. (1994) The effect of the L-azetidine-2-carboxylic acid residue on protein conformation. IV. Local substitutions in the collagen triple helix. Biopolymers 34:51-60. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76283 | - |
dc.description.abstract | 大豆幼苗以高溫或胺基酸類似物azetidine(proline之類似物,以下簡稱Aze)處理,均會誘導第一族低分子量熱休克蛋白質(class I low-molecular-weight heat shock proteins,簡稱class I LMW HSPs)的生合成。但是以10 mM Aze處理24小時後的大豆幼苗,以大豆第一族低分子量熱休克蛋白質抗體進行免疫轉印分析(immunoblotting)的結果顯示class I LMW HSPs的累積量雖然能達到與40℃處理2小時相當,但在氯化四唑染色法(TTC reduction test)所進行的細胞活性測定中,卻顯示不能相對地提高幼苗在45℃致死溫度的忍受力。 本實驗發現將大豆幼苗先以10 mM Aze處理6小時,就足以在往後24小時累積與40℃處理2小時相當量之class I LMW HSPs,但只有10 mM Aze處理後接著以10 mM Pro處理的大豆幼苗對45℃處理2小時具有耐熱性,而接著以其他不同種類胺基酸(如Pro、Gly、Phe、Cys及Gln)處理的幼苗則否。 在次細胞分離(Subcellular fractionation)及免疫轉印分析(Immunoblotting)的結果中顯示,Aze處理後再以10 mM Pro處理24小時的大豆幼苗,約40%的class I LMW HSPs分佈於去核糖體上清液(post-ribosomal supernatant,簡稱PRS)中,而以其他胺基酸繼續處理之幼苗的class I LMW HSPs,僅約10%位於PRS。在熱保護(thermoprotection)實驗中,顯示出純化自10 mM Aze處理6小時後再以10 mM Pro處理24小時之大豆幼苗的class I LMW HSP complex,能降低PRS中蛋白質因受熱而變性沉澱的情形。 由蛋白質胺基酸成份分析(Amino acid composition analysis)的結果顯示,Aze不會存在class I LMW HSP中(pI 6.2,MW 17.3)至於其與大豆幼苗耐熱性的關係,將在本論文中討論。 | zh_TW |
dc.description.abstract | Class I low-molecular-weight heat shock proteins (LMW HSPs) which are likely to promote thermotolerance in soybean seedlings are induced by heat shock treatment as well as azetidine-2-carboxylic acid (Aze), a proline analog. The amount of class I LMW HSPs induced by 10 mM Aze for 24 hours was equivalent to that induced by 40℃ for 2 hours. However, these class I LMW HSPs induced by Aze treatment had no effect on thermotolerance of seedlings. When soybean seedlings, treated with 10 mM Aze for 6 hours, were then incubated with several different amino acids for 24 hours, respectively, all seedlings of each treatment accumulated certain amount of class I LMW HSPs. However, only the seedlings incubated with proline subsequently acquired thermotolerance. In these seedlings, about 40% of class I LMW HSPs were found in post-ribosomal supernatant (PRS) fraction of total protein. On the other hand, only around 10% of class I LMW HSPs induced by subsequent incubated with other amino acids (e.g., Gly, Phe, Cys and Gln) were found in PRS. Class I LMW HSP complex from the soybean seedlings treated with Aze and subsequently with proline reduced denaturation of PRS of soybean seedlings at high temperature. Analysis of amino acid composition indicated that Aze was not incorporated into class I LMW HSP (pI 6.2, MW 17.3), but was found in protein which was not inducible during heat shock. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:19:51Z (GMT). No. of bitstreams: 0 Previous issue date: 1997 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………i 英文摘要……………………………………………………iii 前言……………………………………………………1 材料與方法……………………………………………………7 結果……………………………………………………18 討論……………………………………………………24 圖表……………………………………………………30 參考文獻……………………………………………………49 | |
dc.language.iso | zh-TW | |
dc.title | 胺基酸類似物誘導大豆第一族低分子量熱休克蛋白質生合成之生理生化分析及其與耐熱性的探討 | zh_TW |
dc.title | Effects of Amino Acid Analog on Biosynthesis of Soybean Class I Low-molecular-weight Heat Shock Proteins: Physiological Biochemical Analysis and Their Thermotolerance | en |
dc.date.schoolyear | 85-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 53 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。