Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7618
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃耀輝 | |
dc.contributor.author | Chi-Huan Chung | en |
dc.contributor.author | 鍾季桓 | zh_TW |
dc.date.accessioned | 2021-05-19T17:48:02Z | - |
dc.date.available | 2022-03-12 | |
dc.date.available | 2021-05-19T17:48:02Z | - |
dc.date.copyright | 2020-03-12 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-12-09 | |
dc.identifier.citation | 1. Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A, Nowack B. Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environmental Science & Technology 2014;48:6710-6718.
2. Allen NS, Edge M, Sandoval G, Verran J, Stratton J, Maltby J. Photocatalytic Coatings for Environmental Applications. Photochemistry and Photobiology 2005;81:279-290. 3. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology 2009;4:634-641. 4. Balasubramanian G, Dionysiou DD, Suidan MT, Baudin I, Laıné J-M. Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Applied Catalysis B: Environmental 2004;47:73-84. 5. Becker K, Schroecksnadel S, Geisler S, Carriere M, Gostner JM, Schennach H, Herlin N, Fuchs D. TiO2 nanoparticles and bulk material stimulate human peripheral blood mononuclear cells. Food and Chemical Toxicology 2014;65:63-69. 6. Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology 2008;42:4133-4139. 7. Bocca B, Caimi S, Senofonte O, Alimonti A, Petrucci F. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues. Science of the Total Environment 2018;630:922-930. 8. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J. The potential risks of nanomaterials: a review carried out for ECETOC. Particle and Fibre Toxicology 2006;3:11. 9. Cervantes-Avilés P, Ida J, Toda T, Cuevas-Rodríguez G. Effects and fate of TiO2 nanoparticles in the anaerobic treatment of wastewater and waste sludge. Journal of Environmental Management 2018;222:227-233. 10. Chen, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC, Chen HW, Su SF. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. The Faseb Journal 2006;20:2393-2395. 11. Chen, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews 2007;107:2891-2959. 12. Chen, Hu J, Chen C, Pu J, Cui X, Jia G. Cardiovascular effects of pulmonary exposure to titanium dioxide nanoparticles in ApoE knockout mice. Journal of Nanoscience and Nanotechnology 2013;13:3214-3222. 13. Chowdhury I, Cwiertny DM, Walker SL. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environmental Science & Technology 2012;46:6968-6976. 14. Cirtiu CM, Fleury N, Stephan C, Shelton C. Assessing the Fate of Nanoparticles in Biological Fluids using SP-ICP-MS. PerkinElmer Application Note 2015. 15. da Silva BF, Pérez S, Gardinalli P, Singhal R, Mozeto AA, Barceló D. Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry 2011;30:528-540. 16. Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces 2010;79:5-18. 17. Diegoli S, Manciulea AL, Begum S, Jones IP, Lead JR, Preece JA. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment 2008;402:51-61. 18. Domingos RF, Tufenkji N, Wilkinson KJ. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environmental Science & Technology 2009;43:1282-1286. 19. Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 2016;144:148-153. 20. Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Detection of zinc oxide and cerium dioxide nanoparticles during drinking water treatment by rapid single particle ICP-MS methods. Analytical and Bioanalytical Chemistry 2016;408:5137-5145. 21. Farre C, Lansalot M, Bazzi R, Roux S, Marquette CA, Catanante G, Blum LcJ, Charvet N, Louis C, Chaix C. Automated oligonucleotide solid-phase synthesis on nanosized silica particles using nano-on-micro assembled particle supports. Langmuir 2009;26:4941-4950. 22. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science & Technology 2009;43:1354-1359. 23. Furtado LM, Bundschuh M, Metcalfe CD. Monitoring the fate and transformation of silver nanoparticles in natural waters. Bulletin of Environmental Contamination and Toxicology 2016;97:449-455. 24. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo J-CJ. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environmental Science & Technology 2009;43:3322-3328. 25. Godinez IG, Darnault CJ. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research 2011;45:839-851. 26. Gondikas AP, Kammer Fvd, Reed RB, Wagner S, Ranville JF, Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environmental Science & Technology 2014;48:5415-5422. 27. Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science & Technology 2009;43:9216-9222. 28. Gottschalk F, Ort C, Scholz RW, Nowack B. Engineered nanomaterials in rivers–exposure scenarios for Switzerland at high spatial and temporal resolution. Environmental Pollution 2011;159:3439-3445. 29. Gottschalk F, Lassen C, Kjoelholt J, Christensen F, Nowack B. Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. International Journal of Environmental Research and Public Health 2015;12:5581-5602. 30. Harder V, Gilmour PS, Lentner B, Karg E, Takenaka S, Ziesenis A, Stampfl A, Kodavanti UP, Heyder J, Schulz H. Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhalation Toxicology 2005;17:29-42. 31. Heithmar EM. Screening Methods for Metal-Containing Nanoparticles in Water: US Environmental Protection Agency, Office of Research and Development, 2011. 32. Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environmental Science and Pollution Research 2006;13:225-232. 33. Iavicoli I, Leso V, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. Journal of Nanomaterials 2012;2012:481-508. 34. Illés E, Tombácz E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science 2006;295:115-123. 35. Johnson AC, Bowes MJ, Crossley A, Jarvie HP, Jurkschat K, Jürgens MD, Lawlor AJ, Park B, Rowland P, Spurgeon D. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the Total Environment 2011;409:2503-2510. 36. Johnson AC, Park B. Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environmental Toxicology and Chemistry 2012;31:2582-2587. 37. Jovanović B, Guzmán HM. Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef‐building coral (Montastraea faveolata). Environmental Toxicology and Chemistry 2014;33:1346-1353. 38. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M. Release of silver nanoparticles from outdoor facades. Environmental Pollution 2010;158:2900-2905. 39. Kagi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 2008;156:233-239. 40. Kim BG, Lee PH, Lee SH, Park MK, Jang AS. Effect of TiO2 nanoparticles on inflammasome-mediated airway inflammation and responsiveness. Allergy, Asthma & Immunology Research 2017;9:257-264. 41. Kitchin KT, Prasad RY, Wallace K. Oxidative stress studies of six TiO2 and two CeO2 nanomaterials: immuno-spin trapping results with DNA. Nanotoxicology 2011;5:546-556. 42. Kosmulski M. The pH-dependent surface charging and the points of zero charge. Journal of Colloid and Interface Science 2002;253:77-87. 43. Lee, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environmental Science & Technology 2014;48:10291-10300. 44. Lee, Bartelt-Hunt SL, Li Y, Gilrein EJ. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation. Chemosphere 2016;154:187-193. 45. Lin D, Story SD, Walker SL, Huang Q, Cai P. Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Research 2016;104:381-388. 46. Liou JW, Chang HH. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Archivum Immunologiae Et Therapiae Experimentalis 2012;60:267-275. 47. Liu, Zhang X, Talley JW, Neal CR, Wang H. Effect of NOM on arsenic adsorption by TiO2 in simulated As (III)-contaminated raw waters. Water Research 2008;42:2309-2319. 48. Liu, Chen G, Erwin JG, Adam NK, Su C. Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications. Water Research 2013;47:6149-6156. 49. Longley K. Wastewater disinfection. Manual of Practice 1986. 50. Loosli F, Le Coustumer P, Stoll S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Research 2013;47:6052-6063. 51. Lowry GV, Gregory KB, Apte SC, Lead JR. Transformations of nanomaterials in the environment. 2012;46:6893-6899. 52. Mahdi KN, Commelin M, Peters RJ, Baartman JE, Ritsema C, Geissen V. Transport of silver nanoparticles by runoff and erosion–a flume experiment. Science of the Total Environment 2017;601:1418-1426. 53. McNaught AD, McNaught AD. Compendium of chemical terminology. 2 nd ed: Blackwell Science Oxford, 1997. 54. Minetto D, Libralato G, Ghirardini AV. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview. Environment International 2014;66:18-27. 55. Mitrano D, Ranville J, Bednar A, Kazor K, Hering A, Higgins C. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environmental Science: Nano 2014;1:248-259. 56. Montaño MD, Olesik JW, Barber AG, Challis K, Ranville JF. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. Analytical and Bioanalytical Chemistry 2016;408:5053-5074. 57. Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology 2008;42:4447-4453. 58. Musee N. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Human & Experimental Toxicology 2011;30:1181-1195. 59. Neal C, Jarvie H, Rowland P, Lawler A, Sleep D, Scholefield P. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Science of the Total Environment 2011;409:1843-1853. 60. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622-627. 61. Neubauer K, Stephan C, Shelton C. Determination of Gold and Silver Nanoparticles in Blood Using Single Particle ICP-MS. PerkinElmer, 2014. 62. Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine 2000;57:73-85. 63. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 2007;150:5-22. 64. O’Brien N, Cummins E. Nano-scale pollutants: fate in Irish surface and drinking water regulatory systems. Human and Ecological Risk Assessment 2010;16:847-872. 65. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2005;2:8. 66. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Analytical Chemistry 2011;83:9361-9369. 67. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP, Higgins CP, Ranville JF. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environmental Science & Technology 2012;46:12272-12280. 68. Paul R, Bautista L, De la Varga M, Botet JM, Casals E, Puntes V, Marsal F. Nano-cotton fabrics with high ultraviolet protection. Textile Research Journal 2010;80:454-462. 69. Peters RJ, van Bemmel G, Milani NB, den Hertog GC, Undas AK, van der Lee M, Bouwmeester H. Detection of nanoparticles in Dutch surface waters. Science of the Total Environment 2018;621:210-218. 70. Petković J, Žegura B, Stevanović M, Drnovšek N, Uskoković D, Novak S, Filipič M. DNA damage and alterations in expression of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 2011;5:341-353. 71. Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research 2012;14:1109. 72. Popov AP, Kirillin MY, Priezzhev AV, Lademann J, Hast J, Myllyla R. Optical sensing of titanium dioxide nanoparticles within horny layer of human skin and their protecting effect against solar UV radiation. In: Optical Diagnostics and Sensing V, 2005: International Society for Optics and Photonics;113-123. 73. Puddu V, Choi H, Dionysiou DD, Puma GL. TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Applied Catalysis B: Environmental 2010;94:211-218. 74. Rav-Acha C, Rebhun M. Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment. Water Research 1992;26:1645-1654. 75. Reed RB, Higgins CP, Westerhoff P, Tadjiki S, Ranville JF. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 2012;27:1093-1100. 76. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology 2013;10:15-47. 77. Sun TY, Gottschalk F, Hungerbühler K, Nowack B. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environmental Pollution 2014;185:69-76. 78. Sun TY, Bornhöft NA, Hungerbühler K, Nowack B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environmental Science & Technology 2016;50:4701-4711. 79. Sun X, Tabakman SM, Seo WS, Zhang L, Zhang G, Sherlock S, Bai L, Dai H. Separation of nanoparticles in a density gradient: FeCo C and gold nanocrystals. Angewandte Chemie International Edition 2009;48:939-942. 80. Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Science of the Total Environment 2014;468:1014-1027. 81. Vallar S, Houivet D, El Fallah J, Kervadec D, Haussonne J. Oxide slurries stability and powders dispersion: optimization with zeta potential and rheological measurements. Journal of the European Ceramic Society 1999;19:1017-1021. 82. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr MF, Rejeski D, Hull MS. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology 2015;6:1769-1780. 83. Venkatesan AK, Reed RB, Lee S, Bi X, Hanigan D, Yang Y, Ranville JF, Herckes P, Westerhoff P. Detection and sizing of Ti-containing particles in recreational waters using single particle ICP-MS. Bulletin of Environmental Contamination and Toxicology 2018;100:120-126. 84. Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004;20:6800-6807. 85. Wang D, Wang P, Wang C, Ao Y. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO2 nanoparticles in water environment. Environmental Pollution 2019;248:834-844. 86. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology 2012;46:2242-2250. 87. Westerhoff P, Song G, Hristovski K, Kiser MA. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring 2011;13:1195-1203. 88. Wilbur S, Yamanaka M, Sannac S. Characterization of nanoparticles in aqueous samples by ICP-MS. Agilent Publication. USA, 2015. 89. Witzler M, Küllmer F, Günther K. Validating a single-particle ICP-MS method to measure nanoparticles in human whole blood for nanotoxicology. Analytical Letters 2018;51:587-599. 90. Zhang Q, Liu Z, Du J, Qin W, Lu M, Cui H, Li X, Ding S, Li R, Yuan J. Dermal exposure to nano-TiO2 induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis. The Journal of Toxicological Sciences 2019;44:35-45. 91. 任家弘、林俊全、趙文愷、徐美玲。高屏溪流域環境水資源分布與水質、水污染變遷之研究。地理學報。2004,139-160。 92. 侯文哲。新興奈米污染物在底泥、土壤及地下水環境中的風險。土壤及地下水污染整治。2015,2:127-140。 93. 高淑惠。海洋放流污水添加次氯酸鈉消毒劑之效益評析。國立中央大學碩士論文。2005,89p。 94. 張孟弘。利用水庫淤泥造粒燒製濾料之研究。國立中央大學碩士論文。2004,144p。 95. 張詠聖、廖家鼎、曾素香、周秀冠、陳惠芳。市售口香糖及糖果中二氧化鈦微粒之奈米性檢驗研究。食品藥物研究年報。2015,36-45。 96. 楊鈞沂。高屏溪流域陸源物質之剝蝕與傳輸。國立中山大學碩士論文。2001,137p。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7618 | - |
dc.description.abstract | 奈米科技是一項全新的研究領域,眾多奈米材料中以奈米二氧化鈦(TiO2)最常被使用,應用範圍從光催化、環境整治到消費性產品,如食品漂白劑和紫外線阻擋劑等。由於二氧化鈦奈米微粒在消費性產品的高使用率及普及性,二氧化鈦微粒透過工業設施中的洩漏及排放、水上休閒活動等途徑,很容易暴露到環境水體中。然而,環境水體中二氧化鈦奈米微粒濃度可能落在ng/L等級的低濃度範圍,因此欲分析環境水體中二氧化鈦奈米微粒是具有挑戰性的。故本研究目的在於驗證水體中二氧化鈦奈米微粒之檢測方法,並以此檢測方法分析地表水水源與飲用水系統水樣本中二氧化鈦奈米微粒之質量濃度、數目濃度及粒徑大小。
本研究使用單粒子感應耦合電漿質譜儀(single-particle inductively coupled plasma-mass spectrometry, sp-ICPMS)分析二氧化鈦奈米微粒,並以儀器分析準確度及儀器分析穩定度驗證水體中二氧化鈦奈米微粒檢測方法。另外,本研究採集大臺北地區地表水水源及國內主要飲用水系統水樣進行水中二氧化鈦奈米微粒分佈。地表水水源採樣點選自淡水河系的上游北勢溪坪林段、中游新店溪直潭段及下游淡水河士林段,飲用水系統樣本則取自A、B、C及D等淨水處理場的原水、沉澱、過濾、清水等。採集之水樣以sp-ICPMS分析水體中二氧化鈦奈米微粒。 研究結果顯示,以sp-ICPMS分析水體中二氧化鈦奈米微粒,其質量濃度偵測極限為2.71 ng/L、粒徑大小的偵測極限為2.32 nm。另外,以sp-ICPMS分析二氧化鈦奈米微粒的準確度及穩定度皆介於80 %-120 %間。大臺北地區地表水水樣以淡水河下游水樣中二氧化鈦奈米微粒質量濃度及數目濃度最高,分別為31.7 μg/L及479×103顆/mL。飲用水系統水樣中,以D淨水處理場原水池水樣所含二氧化鈦奈米微粒質量濃度及數目濃度最高,分別為8.69 μg/L及297×103顆/mL,且其二氧化鈦奈米微粒粒徑大小也最大,為112 nm。而A淨水處理場原水池水樣所含二氧化鈦奈米微粒質量濃度最低,為1.29 μg/L,可能與新店溪青潭上游處為水質水量保護區有關。另外,A淨水處理場及B淨水處理場相比於C淨水處理場及D淨水處理場,過濾池水中二氧化鈦奈米微粒數目濃度更低,可能與前者過濾池多一道無煙煤過濾層的處理方式有關。本研究結果可提供更具體的二氧化鈦奈米微粒分佈資訊,供後續人體暴露健康風險評估及水質管制之依據。 | zh_TW |
dc.description.abstract | Nanotechnology is an emerging research field. One of the most commonly used engineered nanomaterials (ENMs) is titanium dioxide (TiO2), with applications ranging from photocatalysis, environmental remediation to consumer products for food -whitening and ultraviolet radiation-blocking. As being widely used in consumer products, titanium dioxide nanoparticles (TiO2 NPs) are readily released into environment resulting from industrial manufacture processes and human recreational activities. However, the detection of TiO2 NPs in environmental medium is challenging because of the expected extremely low concentrations at the ng/L level. Therefore, the objectives of this study were set to validate the methodology for characterizing TiO2 NPs in aqueous samples and to profile the TiO2 NPs distribution in aquatic environment and drinking water system in terms of mass concentration, number concentration and particle size.
In this study, TiO2 NPs in study samples was measured using single-particle ICP-MS (sp-ICPMS), which was validated through accuracy and reliability check for TiO2 NPs measurement. Aqueous samples were collected from the surface water of the Tamsui River Basin at Pinglin of Bei-Shi Creek, Tzetan of Hsindien River, and Shi-Lin of Tamsui River, and from four water treatment plants, i.e., A, B, C, and D water treatment plants, for raw water, sedimentation tank water, filtration tank water, and finished water samples. Results showed that sp-ICPMS was capable for quantitative determination of TiO2 NPs at low concentrations with mass concentration detection limit of 2.71 ng/L and particle size detection limit of 2.32 nm. In addition, both the accuracy and reliability for TiO2 NPs determination by sp-ICPMS were between 80 % and 120 %. For the surface water samples, those from the downstream of the Tamsui River presented the highest mass concentration and number concentration of TiO2 NPs, i.e., 31.7 μg/L and 479×103 particles/mL, respectively. For the drinking water system samples, the raw water in D Water Treatment Plant showed the highest mass concentration, number concentration and particle size of TiO2 NPs, which were 8.69 μg/L, 297×103 particles/mL and 112 nm, respectively. However, the raw water in A Water Treatment Plant showed the lowest mass concentration of TiO2 NPs (1.29 μg/L), which might be attributed to the stipulation for water conservation in the upstream of the Hsindien River. As compared to the C Water Treatment Plant and the D Water Treatment Plant, the filtration tank water in A Water Treatment Plant and the B Water Treatment Plant showed lower mass concentration of TiO2 NPs, which might be ascribe to the use additional anthracite coal as a part of filtration in these tow water treatment plants. Overall, results of this study provided more specific information on the distribution of TiO2 NPs in aquatic environment for subsequent human health risk assessment and water quality control. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:48:02Z (GMT). No. of bitstreams: 1 ntu-108-R06841005-1.pdf: 14192662 bytes, checksum: a90ab90db9c73b92e5a5f712d023127a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 第一章 文獻回顧 1
1.1 緣起 1 1.2 奈米微粒定義與種類 1 1.3 奈米微粒汙染途徑 3 1.4 奈米微粒健康危害與風險 4 1.5 環境宿命與濃度 6 1.6 奈米微粒檢測方式 9 1.7 單粒子感應耦合電漿質譜儀(sp-ICPMS) 10 1.8 研究目的 15 第二章 材料與方法 16 2.1 水樣本中二氧化鈦奈米微粒分析方法驗證 16 2.1.1 離子態二氧化鈦檢測方法 16 2.1.2 奈米態二氧化鈦檢測方法 21 2.2 分析環境水體中的二氧化鈦奈米微粒分佈 25 2.2.1 檢測樣本 25 2.2.2 試藥/試劑/材料/設備 33 2.2.3 水樣本前處理與檢測 36 2.2.4 sp-ICPMS儀器分析條件 36 第三章 結果 40 3.1 水樣中二氧化鈦奈米微粒檢測方法驗證 40 3.1.1 離子態二氧化鈦檢測方法 40 3.1.2 奈米態二氧化鈦檢測方法 42 3.2 環境水體二氧化鈦奈米微粒分佈 49 3.2.1 地表水 49 3.2.2 飲用水系統 54 第四章 討論 58 4.1 水樣中二氧化鈦奈米微粒檢測分析 58 4.1.1 離子態二氧化鈦檢測方法 58 4.1.2 奈米態二氧化鈦檢測方法 62 4.2 環境水體二氧化鈦奈米微粒分佈 83 4.2.1 地表水 83 4.2.2 飲用水系統 86 第五章 結論 93 第六章 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 環境水體及淨水流程中二氧化鈦奈米微粒濃度及粒徑分佈先驅研究 | zh_TW |
dc.title | Pilot Study on the Characterization of Nano-scale Titanium Dioxide in Aquatic Environment and the Water Treatment Processes | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃志彬,王根樹,陳曼莉 | |
dc.subject.keyword | 二氧化鈦,奈米微粒,地表水,飲用水,單粒子感應耦合電漿質譜儀, | zh_TW |
dc.subject.keyword | titanium dioxide,nanoparticle,surface water,drinking water,single-particle inductively coupled plasma mass spectrometer, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU201904373 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-12-10 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
Appears in Collections: | 環境與職業健康科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-1.pdf | 13.86 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.