請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76133
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chii-Cheng Liao | en |
dc.contributor.author | 廖啟政 | zh_TW |
dc.date.accessioned | 2021-07-01T08:18:22Z | - |
dc.date.available | 2021-07-01T08:18:22Z | - |
dc.date.issued | 1995 | - |
dc.identifier.citation | 金平亮三1936,增補台灣植物誌,前臺灣總督府,1-21。
柳 1970,台灣植物群落分類之研究,台灣闊葉林諸群系及熱帶疏林群系之研究,國家科學委員會年報,4:1-36。 章樂民1967,恆春半島季風林生態之研究,臺灣省林業試驗所報告,145:1-21. 楊嘉政1994,南仁山區亞熱帶季節性森林的組成、結構及分佈類型,國立臺灣大學植物科學研究所碩士論文。 劉堂瑞,劉儒淵1977,台灣天然林之群落生態研究(三),恆春半島南仁山區植群生態與植物區係之研究,省立博物館科學年刊,20:51-149。 劉棠瑞、蘇鴻傑1983,森林植物生態學,台灣商務印書館。 謝宗欣1990,南仁山區亞熱帶雨林樹種的組成和分佈類型,國立臺灣大學植物科學研究所碩士論文。 謝長富、陳尊賢、孫義方、謝宗欣、鄭育斌、王國雄、蘇夢淮、江斐瑜1992,墾丁國家公園亞熱帶雨林永久樣區之調查,墾丁國家公園管理處。 蘇鴻傑1984,台灣天然林氣候與植群型之研究:(二)山地植群帶與溫度梯度之關係,中華林學季刊,17(4):57-73。 蘇鴻傑1987b,植群生態多變數分析法之研究:III.降趨對應分析及相關分佈序列法,中華林學季刊,20:45-68. 蘇鴻傑1994,森林植物之物種歧異度,中國生物學會,生物多樣性研討會論文摘要集。 蘇鴻傑、蘇中原1988,墾丁國家公園植群之多變數分析,中華林學季刊,21:17-32。 Austin, M. P. 1985 Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16:39-61. Austin, M. P. and B. O. Austin 1980 Behavior of experimental plant communities along a nutrient gradient. J. Ecol. 68:891-918 Austin, M. P. and T. M. Smith 1989 A new model for the continuum concept. Vegetatioe 83:35-47. Beals, E. W. 1969 Vegetational change along altitudinal gradients. Science 165:981-985. Collins, S. L., S. M. Glenn and D. W. Roberts 1993 The hierarchical continuum concept. J. Veg. Sci. 4:149-156. Connell, J. H. and M. D. Lowman 1989 Low diversity tropical rain forests: Some possible mechanisms for their existence. Amer. Natur. 134:88-119. Curtis, J. T. and R. P. McIntosh 1951 An upland forest continuum in the piairie-forest border region of Wisconsin. Ecology 32:476-496. Gause, G. F. 1964 The struggle for existance. Harpre Publ. Co., N. Y. Gauch, H. G. and R. H. Whittaker 1972 Coenocline simulation. Ecology 53(3):446-451. Gentry, A. H. 1988 Change in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75(1):1-34. Gleason, H. A. 1926 The indivisualistic concept of the plant association. Bull. Torrey. Bot. Club 53:1-20 Glenn-Lewin, D. C. 1977 Species diversity in North American Temperate forests. Vegetatio 33:153-162. Itow, S. 1991 Species turnover and diversity patterns along an evergreen broad-leaved forest coenocline. J. Veg. Sci. 2:477-484. Mahdi, A., R. Law and A. J. willis 1989 Large niche overlaps among coexsisting plant species in a limestone grassland community. J. Ecol. 77:386-400. McIntosh, R. P. 1967 The continuum concept of vegetation. Bot. Rev. 33:130-187. Pianka E. R. 1966 Latitudinal gradients in species diversity: a review of concepts. Amer. Natur. 100:33-46. Sasaki, A. and M. Ohsawa 1993 Vegetation pattern and microtopography on a landslide scar of Mt. Kiyosumi, central Japan. Ecol. Research 8:47-56. Srutek, M. and J. Kolbek 1994 Vegetation structure along the altitudinal gradient at the tree line of Mount Paektu, North Korea. Ecol. Research 9:303-310. Su, Horng-Jye 1984 Studies on the climate and vegetation types of the natural forests in Taiwan. (II) Altitudinal vegetation zones in relation to ttemperature gradient. Q. Jour. Chin. For. 17:(4):57-73. Su, Horng-Jye 1985 Studies on the climate and vegetation types of the natural forests in Taiwan. (III) A scheme of geographical climatic regions. Q. Jour. Chin. For. 18(3):33-44. Sun, I.-F. 1993 The species composition and forest structure of a subtropical rain forest at southern Taiwain. PHD Thesis, Integrative Biology, U. C. Berkeley. Tuomisto, H and K. Ruokolainen 1993 Distribution of Pteridophyta and Melastomataceae along an edaphic gradient in an Amazonian rain forest. J. Veg Sci. 4:25-34. Werger, M. J. A., J. M. W. Louppen and J. H. M. Eppink 1983 Species performances and vefetation boundries along an environmental gradient. Vegetatio 52:59-68. Whitmore, T. C.1984 Tropical rain forests of the Far East. 2nd edn. Clarendon. Press, Oxford. Whittaker, R. H. 1972 Evolution and measurement of species diversity. Taxon 21:213-251. Wilson, J. B. and W. G. Lee 1994 Niche overlap of congeners: a test using plant altitudinal distribution. Oikos 69:469-475. Woods, Paul 1989 Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica 21(4):290-298. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/76133 | - |
dc.description.abstract | 本研究的目的在瞭解南仁山亞熱帶雨林(subtropical rain forest)之梯度性歧異度(β-diversity)及海拔梯度上的分佈類型。在南仁山西北側稜線上設立一長500公尺,寬20?40公尺,海拔高度200?467公尺,面積約1公頃的長形樣帶。紀錄樣帶內DBH?1公分的木本植物種類及其株高、生長狀況等,並加以編號。
樣帶內共紀錄49科91屬139種植物,其中喬木有99種,灌木30種,籐本10種。以革葉冬青為最大優勢,重要位佔7.41%,共有植株533株。其次為細脈赤楠,重要值6.02%,植株200株。前十種優勢種即佔43.55%,優勢度非常集中。 由降趨對應分析法(Detrended-corresponding analysis)可將此樣帶沿海拔梯度區分成三群植被帶。第I群位於溪穀附近海拔330公尺以下,以白榕、紅果椌木及南仁鐵色為最大優勢。第II群位於海拔330-390公尺之間,以草葉冬青、江某、南仁鐵色為優勢。第III群位於海拔390公尺以上,以細脈赤楠、草葉冬青及錐果櫟為優勢。 將種的優勢度沿海拔梯度排列,可以分成四種主要分佈類型。一、溪穀優勢型:以咬人狗、茄冬、白榕為典型種類;二、稜線中段優勢型:以倒卵葉山龍眼為典型種類;三、山頂優勢型:以嶺南椆、錐果櫟、金平氏冬青為典型種類;四、廣泛分佈種:以九節木、南仁鐵色、石苓舅及水同木為典型種類。 科的優勢度也有沿海拔梯度改變的趨勢。其中桑科、大戟科、茜草科、楝科隨海拔增高而減少;樟科、冬青科、殼鬥科則相反的在較高海拔形成優勢。此種改變的趨勢反應出南仁山區在海拔梯度上由熱帶到溫帶的植群帶改變。 樣帶的調查共發現6屬15種在海拔梯度上有分化的現象。分別是楨楠屬、瓊楠屬、山龍眼屬、冬青屬、栲屬、及椆屬。 以樣區間的社會性係數(community coefficient)及海拔高度差作圖,求出迴歸線方程式:Y=-0.0019x+0.5925,其斜率即為梯度性歧異度指數。此結果顯示:1.在同一海拔高度重覆取樣,則相似性指數僅達0.6,顯示社會性歧異度(α-diversity)高。2.若海拔相差300公尺,則植物社會完全改變。本區高β-歧異度的原因可能是由於強烈東北季風造成生育地異質性及恆春半島特殊地理位置所致。 | zh_TW |
dc.description.abstract | The purpose of this study is to understand the β—diversity and spatial pattern of the Nanjenshan forests along an altitudinal gradient. A one-hectare transect, which is 500 m long and 20-40 m wide at altitudes of 220-467 m, was established on the northwestern ridge of Nanjenshan, Kenting National Park. Inventory of woody plants in the transect was conducted, and DBH, height and growth condition for each individual were recorded.
A total of 139 woody species, belonging to 49 families and 91 genera, were recorded. Among them 99 were trees, 30 shrubs and 10 lianas. The most dominant species is Ilex cochinchinensis with an important value (IV) of 7.61% and 533 individuals; the second dominant one is Syzygium euphlebium with an important value of 6.02% and 200 individuals. In general, the forest shows a strong dominance, that is, 43.55% of the dominancewere shared by the first ten species. The result of Detrended-Corresponding Analysis (DCA) shows that the transect can be divided into three vegetation zones along the altitudinal gradient. Zone I is located near river valley with elevations between 220 m and 330 m, and dominated by Ficus benjamina, Dysoxylum kuskuensis, Drypetes hieranensis. Zone II is located at elevation 330-390 m, and dominated by Ilex cochinchinensis, Schefflera octophylla, Drypetes hieranensis. In Zone III between 390 m to 470 m, Syzygium euphlebium, Ilex cochinchinensis, and Cyclobalanopsis longinux are dominant species. Four types of species distribution pattern were classified based on the peak of dominance along the altitudinal gradient: 1) lower elevation type, examplified by Laportea pterostigma, Bischofia javanica, Ficus Benjamina; 2) middle elevation type, examplified by Helicia rengetiensis; 3) high elevation type, examplified by Cyclobalanopsis championii, Cyclobalanopsis longinux; 4) wide distribution type, examplified by Psychotria rubra, Drypetes hieranensis, Glycosmis citrifolia and Ficus fistulosa. Dominance at the family level also tends to change along the altitudinal gradient. Dominance of Moraceae, Euphorbiaceae, Rubiaceae and Meliaceae decreases with increasing altitude. In contrast, that of Lauraceae, Aquifoliaceae and Fagaceaee increases along with altitude. This pattern indicates that a sharp transition from semi-tropical to temperate forest type is evidence. In this study, 15 species of six genera, Machilus, Beilschmiedia, Helicia, Ilex, Castanopsis and Cyclobalanopsis, are found with such niche differentiation along the altitudinal gradient. The slope of regression formula, Y= —0.0019x+0.5925, which is plotted by community coefficient to altitudinal differences, is β—diversity. This result indicates that: 1) when repeated samplings are done at the same elevation, the community coefficient is only 0.6, indicating high α—diversity; 2) when the altitude varies over the range of 300 m, the plant community completely changes. These result agree with the conclusion of previous studies that high β—diversity is resulted from the heterogeneous habitats under a strong influence of northeast seasonal wind, and from the geographically special location of the Hengchun Peninsula. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:18:22Z (GMT). No. of bitstreams: 0
Previous issue date: 1995 | en |
dc.description.tableofcontents | 附表目次……………………………………………………II
附圖目次……………………………………………………III 中文摘要……………………………………………………1 英文摘要……………………………………………………3 壹、前言……………………………………………………6 貳、研究區域環境概述……………………………………9 參、研究方法………………………………………………13 I、取樣……………………………………………………13 II、植物調查………………………………………………13 III、資料輸入與分析………………………………………13 肆、結果……………………………………………………18 I、植物社會分析……………………………………………18 II、海拔分佈類型…………………………………………42 III、梯度性歧異度…………………………………………57 伍、討論……………………………………………………59 I、植群定位…………………………………………………59 II、海拔梯度分佈類型……………………………………63 III、梯度性歧異度…………………………………………66 陸、結論……………………………………………………68 柒、參考文獻………………………………………………70 捌、附錄……………………………………………………73 | - |
dc.language.iso | zh-TW | - |
dc.title | 南仁山區亞熱帶雨林海拔梯度與植被組成、結構、歧異度及分佈類型的關係 | zh_TW |
dc.title | Altitudinal Variation in Composition, Structure, Diversity and Distribution Pattern of the Subtropical Rain Forest in Nanjenshan | en |
dc.date.schoolyear | 83-2 | - |
dc.description.degree | 碩士 | - |
dc.relation.page | 72 | - |
dc.rights.note | 未授權 | - |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。