請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7600完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張培仁 | |
| dc.contributor.author | Cheng-Hsi Weng | en |
| dc.contributor.author | 翁承羲 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:47:32Z | - |
| dc.date.available | 2023-05-31 | |
| dc.date.available | 2021-05-19T17:47:32Z | - |
| dc.date.copyright | 2018-05-31 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-05-04 | |
| dc.identifier.citation | [1] J.F. Joanny, and P.G. De Gennes, “A model for contact angle hysteresis,” The Journal of Chemical Physics, vol. 81, pp.552-562, 1984.
[2] E.B. Dussan, and R.T.P. Chow, “On the ability of drops or bubbles to stick to non-horizontal surfaces of solids,” J. Fluid Mech. vol.137, pp.1-29, 1983. [3] P.G. De Gennes, “Wetting: statics and dynamics,” Rev. Mod. Phys. vol. 57, pp.827-863, 1985. [4] C.W. Extrand, “A thermodynamic model for contact angle hysteresis,” J. Colloid & Interface Sci., vol. 207, pp.11-19, 1998. [5] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, “Wetting and spreading,” Rev. Mod. Phys., vol. 81, pp.739-805, 2009. [6] J. Hyvaluoma, A. Koponen, P. Raiskinmaki, and J. Timonen, “Droplets on inclined rough surfaces,” Euro. Phys. J. E, vol. 23, pp.289-293, 2007. [7] F.E. Bartell, and J.W. Shepard, “Surface Roughness as Related to Hysteresis of Contact Angles. II. The Systems Paraffin–3 Molar Calcium Chloride Solution–Air and Paraffin–Glycerol–Ai,” J. Phys. Chem., vol. 57, pp.455-458, 1953. [8] E.B. Dussan, “On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops,” J. Fluid Mech., vol. 174, pp.381-397, 1987. [9] E.B. Dussan, “On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size,” J.Fluid Mech., vol. 151, pp.1-20, 1985. [10] Edward Bormashenko, and Gene Whyman, “On the Role of the Line Tension in the Stability of Cassie Wetting,” Langmuir, vol. 29, pp.5515–5519, 2013. [11] Yawei Liu, Jianjun Wang, and Xianren Zhang, “Accurate determination of the vapor-liquid-soild contact line tension and the viability of Young equation,” Scientific Reports, vol. 3, 2013. [12] Christopher J. Barrett, Jun-ichi Mamiy, Kevin G. Yagerc, and Tomiki Ikeda, “Photo-mechanical effects in azobenzene-containing soft materials,” Soft Matter, vol. 3, pp.1249-1261, 2007. [13] G. S. Hartley, “The cis-form of azobenzene,” Nature, vol. 140, pp.281-281, 1937. [14] G. S. Hartley, “The cis-form of azobenzene and the velocity of the thermal cis -> trans-conversion of azobenzene and some derivatives,” Journal of the Chemical Society, pp.633-642, 1938. [15] P. P. Birnbaum, J. H. Linford, and D. W. G. Style, “The absorption spectra of azobenzene and some derivatives,” Transactions of the Faraday Society, vol. 49, pp.735-744, 1953. [16] George Zimmerman, Lue-Yung Chow, and Un-Jin Paik, “The Photochemical Isomerization of Azobenzene,” Journal of the American Chemical Society, vol. 80, pp.3528-3531, 1958. [17] Miguel Camacho-Lopez, Heino Finkelmann, Peter Palffy-Muhora, and Michael Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nature Materials, vol. 3, pp.307-310, 2004. [18] Hyun‐Kyoung Kim, Xiao‐Shui Wang, Yukihiro Fujita, Atsushi Sudo, Haruo Nishida Masayuki Fujii, and Takeshi Endo, “Photomechanical Switching Behavior of Semi‐Interpenetrating Polymer Network Consisting of Azobenzene‐Carrying Crosslinked Poly(vinyl ether) and Polycarbonate,” Macromolecular Rapid Communications, vol. 26, pp.1032-1036, 2005. [19] L. H. Sperling, and V. Mishra, “The current status of interpenetrating polymer networks,” Polym. Adv. Technol., vol. 7, pp.17-208, 1996. [20] T. Kiguchi, H. Aota, and A. Matsumoto, “Approach to Ideal Simultaneous Interpenetrating Network Formation via Topological Cross-Links between Polyurethane and Polymethacrylate Network Polymer Precursors,” Macromolecules, vol. 37, pp.8249-8255, 2004. [21] Yizhong Huang, Hongliang Kang, Guanghua Li, Chunying Wang, Yong Huang, and Ruigang Liu, “Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose,” RSC Advances, vol. 3, pp.15909-15916, 2013. [22] L. Boruvka, and A. W. Neumann, “Generalization of the classical theory of capillarity,” The Journal of Chemical Physics, vol. 66, pp. 5464-5476, 1977. [23] W. Barthlott, and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol. 202, pp.1-8, 1997. [24] X. Gao, and L. Jiang, “Biophysics: Water-repellent legs of water striders,” 432, 36. 2004. [25] Y. Zhang, Y. Cheng, L. Shi, J. Li, and Z. Guo, “Recent progress of double-structural and functional materials with special wettability,” J. Mater. Chem., vol. 22, pp.799-815, 2012. [26] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and B. D. Zhu, “Super-Hydrophobic Surfaces: From Natural to Artificial,” Adv. Mater., vol. 14, pp.1857-1860, 2002. [27] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir, vol. 24, pp.4114-4119, 2008. [28] A. Cassie, and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc., vol. 40, 546-551, 1944. [29] R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Indust. Eng. Chem., vol. 28, pp.988-994, 1936. [30] P. G. De Gennes, F. Brochard-Wyrt, and D. Quéré, Capillarity and Wetting Phenomena; Springer: Berlin, 2003. [31] Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, “Effect of surface structure on the hydrophobicity and sliding behavior of water droplet,” Langmuir, vol. 18, pp.5818-5822, 2002. [32] D. Quéré, “Wetting and roughness,” Ann. Rev. Matter. Res., vol. 38, pp.71-99, 2008. [33] N. A. Patankar, “On the Modeling of Hydrophobic Contact Angles on Rough Surfaces,” Langmuir, vol. 19, pp.1249-1253, 2003. [34] D. Quéré, “Rough ideas on wetting,” Physica A, vol. 313, pp.2-46, 2002. [35] G. Palasantzas, and J. T. M.de Hosson, “Wetting on rough surface,” Acta Mater., vol. 49, pp.3533-3538, 2001. [36] H. Nakae, R. Inui, Y. Hirata, and H. Saito, “Effects of surface roughness on wettability,” Acta Mater., vol. 46, pp.2313-2318, 1998. [37] K. Topolski, D. Urban, S. Brandon, and J. Deconinck, “Influence of the geometry of a rough substrate on wetting,” Phys. Rev. E, vol. 56, pp.3353-3357, 1997. [38] G. Wolansky, and A. Marmur, “Apparent contact angles on rough surfaces: the Wenzel equation revisited,” Colloids Surf. A, vol. 156, pp.381-388, 1998. [39] S. Brandon, N. Haimovich, E. Yeger, and A. Marmur, “Partial wetting of chemically patterned surfaces: The effect of drop size,” J. Colloid Interface Sci., vol. 263, pp.237-243, 2003. [40] G. Wolansky, and A. Marmur, “The Actual Contact Angle on a Heterogeneous Rough Surface in Three Dimensions,” Langmuir, vol. 14, pp.5292-5297, 1998. [41] A. Marmur, and B. Krasovitsi, “Line tension on curved surfaces: Liquid drops on solid micro- and nanospheres,” Langmuir, vol. 18, pp.8919-8923, 2002. [42] S. Suzuki, and K. Ueno, “Apparent Contact Angle Calculated from a Water Repellent Model with Pinning Effect,” Langmuir, vol. 33 (1), pp.138–143, 2017. [43] J. A. Wallace, and S. Schurch, “Line tension of sessile drops placed on a phospholipid monolayer at the water-fluorocarbon interface,” Colloids Surf., vol. 43, pp.207-221, 1990. [44] J. Drelich, and J. D. Miller, “Modification of the Cassie equation,” Langmuir, vol. 199(2), pp.619-621, 1993. [45] C. Huh, and S. G. Mason, “Effects of surface roughness on wetting (Theoretical),” J. Colloid Interface Sci., vol. 60, pp.11-38, 1977. [46] J. W. Gibbs, “The Collected Works of J. Willard Gibbs, 1, 288, New Haven, Yale University Press, London, 1957. [47] J. S. Rowlinson, and B. Widom, “Molecular Theory of Capillarity,” Oxford Science Publications, New York, 1984. [48] Y. W. Liu, J. J. Wang, and X. R. Zhang, “Accurate determination of the vapor-liquid-solid contact line tension and the viability of Young equation,” Sci. Rep., vol. 3, pp.2008-2013, 2013. [49] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids Surf. A, vol. 116, pp.43-54, 1996. [50] A. Amirfazli, and A. W. Neumann, “Status of the three-phase line tension,” Adv. Colloid Interface Sci., vol. 110, pp.121-141, 2004. [51] L. Schimmele, M. Napiórkowski, and S. Dietrichl, “Conceptual aspects of line tensions,” J. Chem. Phys, vol. 127, 164715, 2007. [52] L. O. Heim, and E. Bonaccurso, “Measurement of line tension on droplets in the submicrometer range,” Langmuir, vol. 29, pp.14147-14153, 2013. [53] Y. G. Gu, D. Q. Li, and P. Cheng, “Determination of line tension from the shape of axisymmetric liquid-vapor interfaces around a conic cylinder,” J. Colloid Interface Sci., vol. 180, pp.212-217, 1996. [54] A. Checco, and P. Guenoun, “Nonlinear dependence of the contact angle of nanodroplets on contact line curvature,” Phys. Rev. Lett., vol. 91, 186101, 2003. [55] J. Drelich, and J. D. Miller, “The line/preudo-line tension in three-phase system.,” Particul. Sci. Technol., vol. 10, pp.1-20, 1992. [56] R. D. Peter, X. M. Yang, and T. K. Kim, “Wetting behavior of block copolymers on self-assembled films of alkylchlorosiloxanes: effect of grafting density,” Lanmguir, vol. 16, pp.9620-9626, 2000. [57] G. M. Whitesides, and A. D. Stroock, “Flexible methods for microfluidics,” Phys. Today, vol. 54, 42, 2001. [58] D. Winter, P. Virnau, and K. M. Binder, “Monte carlo test of the classical theory for heterogeneous nucleation barriers,” Phys. Rev. Lett., vol. 103, 225703, 2009. [59] B. V. Toshev, “Thermodynamic theory of thin liquid films including line tension effects,” Current Opinion in Colloid & Interface Science, vol. 13, pp.100-106, 2008. [60] J. M. Kim, F. Wolf, and S. K. Baier, “Effect of varying mixing ratio of PDMS on the consistency of the soft-contact Stribeck curve for glycerol solutions,” Tribology International, vol. 89, pp.46-53., 2015. [61] A. Amirfazli, S. Hänig, A. Müller, and A. W. Neumann, “Measurements of line tension for solid-liquid-vapor system using drop size dependence of contact angles and its correlation with solid-liquid interfacial tension,” Langmuir, vol. 16, pp.2024-2031, 2000. [62] R. Di Mundo, R. d’Agostino and F. Palumbo, “Long-Lasting Antifog Plasma Modification of Transparent Plastics,” ACS Appl. Mater. Interfaces, vol. 6, pp.17059-17066, 2014. [63] M. Nosonovsky and B. Bhushan, “Biomimetic Superhydrophobic Surfaces: Multiscale Approach,” Nano Lett., vol. 7, pp.2633-2637, 2007 [64] D. Dilip, N. K. Jha, R. N. Govardhan and M.S. Bobji, “Controlling air solubility to maintain “Cassie” state for sustained drag reduction,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 459, pp.217-224, 2014. [65] M. V. Graham and N. C. Cady, “Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling,” Coatings, vol. 4, pp.37-59, 2014. [66] R. N. Wenzel, “RESISTANCE OF SOLID SURFACES TO WETTING BY WATER,” Ind. Eng. Chem., vol. 28, pp.988-994, 1936 [67] N. Senbil and A. D. Dinsmor, “Deformation of the contact line around spherical particles bound at anisotropic fluid interfaces,” Soft Matter, vol. 13, pp.8232-8239, 2017. [68] D. Lee, S. H. Baek, T. H. Kim, J.-G. Yoon, C. M. Folkman, C. B. Eom, and T. W. Noh, “Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects,” Phys. Rev. B, vol. 84, 25305, 2011. [69] X. Feng, J. Zhai and L. Jiang, “The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films,” Angew. Chem. Int. Ed., vol. 44, pp.5115-5118, 2005. [70] Z. Nooralian, M. P. Gashti and I. Ebrahimi, “Fabrication of a multifunctional graphene/polyvinylphosphonic acid/cotton nanocomposite via facile spray layer-by-layer assembly,” RSC Adv., vol. 6, 23288, 2016. [71] M. P. Gashti, F. Alimohammadi and A. Shamei, “Preparation of water-repellent cel- lulose fibers using a polycarboxylic acid/hydrophobic silica nanocomposite coating.” Surface and Coatings Technology, vol. 206, pp.3208-3215, 2012. [72] M. P. Gashti, S. Moradian, A. Rashidi and M.-E. Yazdanshenas, “Dispersibility of hydrophilic and hydrophobic nano-silica particles in polyethylene terephthalate films: evaluation of morphology and thermal properties.” Polymers & Polymer Composites, vol. 23, pp.285-296, 2015 [73] L. Feng, Y. A. Zhang, M. J. Xi, Y. Zhu, N. Wang, F. Xia and L. Jiang, “Petal Effect: A Superhydrophobic State with High Adhesive Force.” Langmuir, vol. 24, pp.4114-4119, 2008. [74] N. K. Mandsberg and R. Taboryski, “ The rose petal effect and the role of advancing water contact angels for drop confinement.” Surf. Topogr.: Metrol. Prop., vol. 5, pp.024001, 2017. [75] X. J. Feng and L. Jiang, “Design and creation of superwetting/antiwetting surfaces.” Adv. Mater., vol. 18, pp.3063-3078, 2006. [76] Y. Huang, H. Kang, G. Li, C. Wang, Y. Huang and R. Liu, “Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose.” RSC Adv., vol. 3, pp.15909-15916, 2013. [77] A. Nakajima, K. Hashimoto and T, Watanabe, “Recent Studies on Super-Hydrophobic Films.” Monatsh. Chem., vol. 132, pp.31-41, 2001. [78] X. W. Pei, A. Fernandes, B. Mathy, X. Laloyaux, B. Nysten, O. Riant and A. M. Jonas, “Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon.” Langmuir, vol. 27, 9403-9412, 2011. [79] H. K. Kim, X. S. Wang, Y. Fujita, A. Sudo, H. Nishida, M. Fujii and T. Endo, “Photomechanical Switching Behavior of Semi‐Interpenetrating Polymer Network Consisting of Azobenzene‐Carrying Crosslinked Poly(vinyl ether) and Polycarbonate.” Macromol. Rapid Commun., vol. 26, pp.1032-1036, 2005. [80] T. Kiguchi, H. Aota and A. Matsumoto, “Approach to Ideal Simultaneous Interpenetrating Network Formation via Topological Cross-Links between Polyurethane and Polymethacrylate Network Polymer Precursors.” Macromolecules, vol. 37, pp.8249-8255, 2004. [81] V. Mishra and L. H. Sperling, “Simultaneous interpenetrating networks of a polyurethane and poly([methyl methacrylate]‐stat‐[N,N‐dimethylacrylamide]).” J. Polym. Sci., Part B: Polym. Phys., vol. 34, pp.883-892, 1996. [82] T. J. White, N. Y. Tabiryan, S. V. Serak, U. A. Hrozhyk, V. P. Tondiglia, H. Koerner, R. A. Vaia, T. J. Bunning, “Photodeformable polymers: a new kind of promising smart material for micro- and nano-applications.” Soft Matter, vol. 4, pp.1796-1798, 2008. [83] C. Wu, “Synthesis and characterization of a novel series of unsymmetric dimesogenic compounds containing cholesteryl ester and nitroazobenzene moieties.” Matter. Lett., vol. 61, pp.1380-1383, 2007. [84] B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem., vol. 99, pp.2803-2806, 1995. [85] L. Makkonen, “A thermodynamic model for contact angle analysis,” J. Chem. Phys., vol. 147, pp.064703, 2017. [86] L. A. Girifalco and R. J. Good, “A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension,” J. Phys. Chem., vol. 61, pp.904-909, 1957. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7600 | - |
| dc.description.abstract | 本論文展示花瓣效應是由線張力所控制,並發現表面的結構的特徵長度所扮演的重要角色。藉由線張力所修正的 Wenzle方程式,對應實驗上的數據是較合理的。在這研究中利用高分子材料設計不同的特徵長度的基材表面,進一步去評估在這樣的不同的表面粗糙度與表面接觸線比例對於遲滯角的影響。在遲滯角實驗中,線張力是會轉變的,並且由正轉為負值,轉變的過程,遲滯的狀態也剛好是前進角轉為後退角的狀態。可發現表面粗糙度影響的是在前進角的階段,線張力則是主要影響後退角。當增加特稱長度時,接觸角可從107±1.1度增加為 129.3 ± 0.9度,而遲滯角的部分則是明顯的由23.1±1.3度增加到62.1±2.1度。在這樣的實驗觀察結果下,線張力對於潤濕效應的影響有了清楚的了解,並可以設計所需要的結構表面,這對於生醫上的設計與應用可以有大幅的幫助。
在這研究中,了解表面粗糙度對於潤濕效應的影響,進一步發展表面能量對於潤濕效應的影響。開發一可光控的人造玫瑰花瓣,藉由偶氮本以互穿型網狀結構作為設計。玫瑰花瓣上的微米與奈米結構皆完整的仿生玫瑰花瓣上的微米與奈米結構皆完整的複製。由於偶氮苯是光學幾何異構物,就由不同的波長的光照射,偶氮本的順反異購物有不同的表面能量,使得此仿生花瓣的接觸角度變化範圍99.2±0.9度至 140.9±1.8度,遲滯角也可在99.2±0.9度到140.9±1.8度之間來回變化,比起真實的玫瑰,此仿生花瓣有更高的接觸角與更明顯的遲滯效應,更近一步的是可用非接觸的光學方式進而改變與調整。 | zh_TW |
| dc.description.abstract | This paper experimentally investigated how the petal effect is governed by line tension and showed that the characteristic length of the surface structure plays an important role. Particularly, Wenzel’s equation modified with line tension was used to model the contact angle hysteresis. We designed different surfaces on polydimethylsiloxane with various structure lengths, 15 to 50 um, to evaluate the effect of surface roughness and the actual length of the three-phase contact line on the contact angle hysteresis. The sign of the line tension alters from positive to negative when the droplet changes from advancing to receding state. The surface tension dominates the contact angle in the advancing state while the line tension governs the contact-line movement in the receding state. By increasing the characteristic length of the surface structure, the static contact angle can be altered from 107±1.1o to 129.3 ± 0.9o, and the contact angle hysteresis changes obviously from 23.1±1.3o to 62.1±2.1o. These results facilitate better understanding of the effect of line tension on a wetting surface for a more robust biomimetic design.
This paper presents a biomimetic rose petal whose contact angle hysteresis can be reversibly tuned by photo-illumination. With azobenzene interpenetrating polymer network, the micron- and nano-scale surface structure of a rose petal was duplicated. By changing the exposure light wavelength, the surface free energy of the artificial petal was modulated between trans-to-cis azobenzene photo-isomerations. The static contact angle of the artificial petal can be tuned to range from 99.2±0.9o to 140.9±1.8o. The contact angle hysteresis between 50.3 ± 0.6o and greater than 84o can be achieved. Comparing to the value measured on a real rose petal, the fabricated counterpart presents more prominent petal effect in terms of larger static contact angle and greater contact angle hysteresis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:47:32Z (GMT). No. of bitstreams: 1 ntu-107-F99543035-1.pdf: 20900390 bytes, checksum: 7af8f533109d11719bb1204b85f16244 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iv Abstract v Contents vii Figures x Tables xxi Nomenclature xxii .Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.2.1. Line tension 2 1.2.2. Azobenzene in interpenetrating polymer networks 4 .Chapter 2 Wetting behavior theories 9 2.1 Introduction 9 2.2 Modified Young equation 10 2.3 Modified Wenzel equation 12 2.4 Modified Gibbs free energy of Wenzel’s model 14 .Chapter 3 Evolution of three-phase line tension on petal-like contact angle hysteresis 16 3.1 Introduction 16 3.2 Experiment 19 3.2.1 Materials and fabrication 19 3.2.2 Measurement of contact angles 20 3.3 Results and discussion 21 3.3.1 Static contact angle 21 3.3.2 Contact angle hysteresis 23 3.3.3 Hysteresis of Gibbs free energy 26 3.3.4 Ratio of the actual length of the contact line to the apparent (κ) 28 3.3.5 Effect of structure length 29 3.4 Conclusion 31 3.5 Experiment Results of other structures 31 .Chapter 4 Photo-controllable contact angle hysteresis on an artificial Azo-IPN petal 53 4.1 Introduction 53 4.2 Material and fabrication 53 4.3 Measurement procedure of the contact angle hysteresis 56 4.4 Conclusion 63 .Chapter 5 Conclusions 64 .Chapter 6 Future works 65 6.1 Redefined surface roughness (λ) and ratio of actual length of the three-phase contact line to the apparent (κ) 65 6.2 New derivation 67 References 72 | |
| dc.language.iso | en | |
| dc.title | 三相線張力於遲滯角之影響與光控仿生偶氮苯花瓣 | zh_TW |
| dc.title | Evolution of three-phase line tension on contact angle hysteresis and photo-controllable design on an artificial Azo-IPN petal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 施文彬 | |
| dc.contributor.oralexamcommittee | 賴君亮,戴子安,楊馥菱,胡毓忠 | |
| dc.subject.keyword | 花瓣效應,線張力,特徵長度,遲滯角,高分子,仿生, | zh_TW |
| dc.subject.keyword | petal effect,line tension,characteristic length,contact angle hysteresis,polymers,biomimetic., | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201800777 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2018-05-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf | 20.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
