Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75982
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author蔡青蒨zh_TW
dc.date.accessioned2021-07-01T08:16:59Z-
dc.date.available2021-07-01T08:16:59Z-
dc.date.issued1993
dc.identifier.citationBarrett-Lennard E.G. and Greenway H. (1982) Partical separation and characterization of soluble phosphatases from leaves of wheat grown under phosphorus deficiency and water deficit. J. Exp. Bot. 33:694-704
Bartolf M., Brennan E. and Price C.A. (1980) Partial characterization of a cadmium-binding protein from roots of cadmium-treated tomato. Plant Physiol. 66:438-443
Buhler R.H.O. and Kagi J.H.R. (1974) Human hepatic metallothioneines. FEBS. Lett. 39:229-234
Casterline J.L. and Barnett N.M. (1977) Isolation and characterization of cadmium-binding components in soybean plants. Plant Physiol. 59:124 (Suppl)
Clare D.A., Duong M.N., Archibald F. and Fridovich I. (1984) Effect of molecular oxygen on detection of superoxide radical with nitrobule tetrazolium and on activity stains for catalase. Analytical Biochemistry 140:532-537
Cumming J.R. and Taylor G.J. (1990) Mechanisms of metal tolerance in plants: physiological adaptations of exclusion of metal ions from the cytoplasm. Stress responses in plants: Adaptation and acclimation mechanisms. New York: Wiley-liss. pp 329-356
Cutler J.M. and Rains D.W. (1974) Characterization of Cd by plant tissue. Plant Physiol. 54:67-71
Ellman G.L., Courtney K.D., Andres V. and Featherstone R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol 7:88-95
Fridovich I. (1978) The biology of Oxigen radicals. Science 201(8):875-880
Greger M. and Lindberg S. (1986) Effect of Cadmium and EDTA on Young suger beets (Beta vulgaris). 1. Cadmium uptake and sugar accumulation. Physical. Plant.66:69-74
Griffith O.W. and Meister A. (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butylhomocysteine sulfoximine). J. Biol. Chem. 254:7558-7560
Grill E., Winnacker E.L., and Zenk M.H. (1985) Phyto-chelatins: the Principal heavy metal-complexing peptides of higher plants. Science 230:674-676
Grill E., Gekeler W., Winnacker E.L., and Zenk M.H. (1986) Homo-phytochelatins are heavy metal-binding peptides of homoglutathione containing Fabales. FEBS. Lett. 205:47-50
Grill E., Winnacker D.L., and Zend M.H. (1988) Induction of heavy metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep. 7:375-378
Grill E. (1989) Phytochelatins in plants. Metal Ion Homeostasis: molecular biology and chemistry pp 283-300
Hamer D.H. (1986) Metallothionein. Ann. Rev. Biochem.55:913-951
Hayashi Y., Nakagawa C.W., and Murasugi A. (1986) Unique properties of Cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe. Environ. Health. Perspect. 65: 13-19
Heuillet E., Moreau A., Halpern S., Jeanne N. and Puiseux Dao S. (1986) Cadmium binding to a thiol-molecule of Dunaliella biocalata contaminated with CdCl2: electron probe microanalysis. Biol. Cell 58:79-86
Hoagland D.R. and Arnon D.I. (1950) The water culture method of growing plants without soil. California agriculture experiment station circular 347
Jarvis S.C., Jones L.H.P. and Hopper M.J. (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant soil. 44:179-191
Kagi J.H.R. and Vallee B.L. (1960) Metallothionine: a Cd- and Zn-containing protein from Equine renal cortex. J. Biol. Chem. 235:3460-3465
Khan D.H., Duckeet J.G., Frankland B. and Kirkhan J.B. (1984) An X-ray microanalytical study of the distribution of Cd in roots of Zea mays L. J. Plant Physiol. 115:19-28
Kramer D., Anderson W.P. and Preston J. (1978) Transfer cells in the root epidermis of Atriplex hastata L. As a response tosalinity:A comparative cytological and X-ray microscopic investigation. Plant Physiol. 5:739-747
Margoshe M. and Vallee B.L. (1957) A Cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79:4813-4814
Mathys W. (1977) The role of malate, oxalate and mastard oil glucosides in the evolution of zinc resistance in herbaze plant. Physiol. Plant 40:130
Murasugi A., Wada C. and Hayashi Y. (1981) Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. J. Biochem. 90:1561-1564
Murasugi A., Wada C. and Hayashi Y. (1983) Occurrence of Acid-labile sulfide in Cadmium-binding peptide 1 from fission Yeast. Biochem. J. 93:661-664
Murasugi A., Wada C. and Hayashi Y. (1984) Formation of cadmium-binding peptide allomorphs in fission yeast. J. Biochem. 96:1375-1379
Mutoh H. and Hayashi Y. (1988) Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin small cadmium-binding peptides. Biochem. Biophys. Res. Commun. 151:32-39
Ochiai E.I. (1988) Uniqueness of zinc as a bioelement. J. Chem. Educ. 65:945-94
Padmaja K., Prasad D.D.K. and Prasad A.R K. (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris seedlings by cadmium acetate. Photosynthetica. 24:399-405
Park H.C. and Robert L.V. (1986) Purification and characterizatio of homogeneous sunflower seed acid phosphatase. Phytochemistry. 25:351-357
Pett C.M. (1978) Stimulation of cadmium uptake in relation to the cadmium content of plants. Plant Physiol.62:554-557
Rabinowitz J.C. (1978) Analysis of acid-labile sulfide and sulfhydryl groups. Methods Enzymol 53:275-277
Rauser W.E., Hartmann H.J. and Weser U. (1983) Cadmium-tiolate protein from the grass Agrostis Gigantea. FEBS. Lett. 164:102-104
Rauser W.E. and Glover J. (1984) Cadmium-binding protein in the roots of maize. Can. J. Bot. 62: 1645-1650
Rauser W.E. and Ackerley C.A. (1987) Localization of cadmium in granules within differentiating and mature root cell. Can. J. Bot. 65:643-646
Rauser W.E. (1990) Phytochelations. Annu. Rev. Biochem. 59:61-86
Rauser W.E., Schupp R. and Rennenberg H. (1991) Cysteine, γ-glutamylcysteine and glutathione levels in maize seedlings. Plant Physiol. 97:128-138
Reese R.N., McCall R.D. and Roberts L.W. (1986) Cadmium-induced ultrastructural changes in suspention-cultured tobacco cell. Enviromental and Experimeantal Botany Vol.26 No2. pp169-173
Reese R.N. and Wagner G. (1987) Effects of buthionine sulfoximine on Cd-binding peptide levels in suspension cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol. 84:574-577
Reese R.N. and Wagner G.J. (1987) Properties of tobacco (Nicotiana tabacum) cadmium-binding peptides. Biochem. J. 241:641-647
Robinson D.G., Ehler U., Herken R., Herrmann B., Mayer F. and Schurmann F.-W. (1987) Methods of preparation for electron mcroscopy. Springer-Verlag Berline Heidelberg pp 38
Scheller H. V., Huang B. and Goldsbrough P.B. (1987) Phytochelatin synthesis and glutathione levels in response to heavy metsls in tomato cells. Plant Physiol. 85:1031-1035
Somashekaraiah B.V., Oadmaja K. and Prasad A.R. (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of peroxides in chlorophyll degradation. Physiologia. Plantarum. 85:85-89
Speiser D.M., Abrahamson S.L, Banuelos G. and Ow D. (1992) Brassica juncea produces a phytochelatin-cadmium-sulfide complex. Plant Physiol 99: 817-821
Steffens J.C. (1990) Heavy metal stress and the phytochelatin response. Stress Responses in Plants: Adaptation and Acclimation Mechanisms. New York: Wileyliss pp 377-394
Steffens J.C. (1990) The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:553-75
Stobart A.K., Griffiths W.T., Bukhari I.A. and Sherwood R.P. (1985) The effect of cadmium on the biosynthesis of chlorophyll in leaves of barly. Physiol. Plant 63:293-298
Strain H.H., Cope B.T. and Svec W.T. (1971) Analytical procedure for the isolation, identification, estimation, and investgation of the chlorophylls. Method Enzymol. 23:452-476
Tukendorf A. and Rauser W.E. (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70:155-166
Vallee B.L. and Ulmer D.D. (1972) Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41:91-128
V?geli-Lange R. and Wagner G.J. (1989) Subcdllular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92:1086-1093
Wanger G.J. and Trotter M.M. (1982) Inducible cadmium-binding complexes of cabbage and tobacco.Plant Physiol. 69: 804-809
Wanger G.J. (1984) Characterization of a cadmium-binding complex of cabbage leaves. Plant Physiol. 76:797-805
Weigel H. J. and Jager H. J. (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65:480-482
Wilkins D. A. (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol.80:623-633
Wong M.K., Chuah G.K.and Koh L.L., Ang K.P. and Hew C.S. (1984) The uptake of cadmium by Brassica chinesis and its effect on plant and iron distribntion. Environ. Expt.Bot. 24:189-195
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75982-
dc.description.abstract本實驗是以發芽後二十天或四十天的百日草(Zinnia elegans)為材料。以1 ppm,5 ppm及10 ppm等不同鎘濃度培養液處理植株十天。另以2 ppm鎘濃度分別進行間斷和連續給鎘培養十八天。鎘害現像是以檢視外表形態及利用超薄切片觀察超微構造的變化,同時以電泳分析法檢定解毒同功酵素的類型受鎘害的差異。鎘在植株內的分佈和累積則以原子吸收光譜儀測定。利用離子交換柱形色層和膠體過濾柱形色層法分離鎘結合勝?,並測定其氨基酸組成的比例。並配合酸性不穩定硫的測定,以區別鎘結合勝?的存在類型。
鎘害主要造成植株矮化、葉脈與附近葉片的黃化以及根部生長的抑制。培養液的鎘含量超過1 ppm時即呈鎘害。鎘濃度愈高受害程度愈嚴重,表現鎘害所需的時間愈短。
超微構造的觀察顯示受害植物以葉綠體受害最突出。油滴(Plastoglobuli)數目增加、葉綠餅間層(Intergranal thylakoid)膨脹鬆散、葉綠餅數目和疊膜層數減少及其膜腔膨大鬆散是常見之現象,隨鎘濃度的增高而明顯。根部及維管束組織細胞的細胞壁、原生質膜以及液胞則有極多的黑色小點聚集。
酸性磷酸酵素(Acid phosphatase)和過氧化氫酵素(Peroxidase)的同功酵素類型,其活性的表現隨鎘處理濃度的不同而異。超氧歧化酵素(Superoxide dismutase)同功酵素的表現則與鎘濃度無關。
百日草消耗培養液中的鎘量,以處理後六天達最大消耗量。消耗量的下降則隨處理鎘濃度的增高而加快。連續給鎘處理與間斷給鎘在實驗初期的耗鎘量相當,但六天後則呈不同消耗曲線。鎘進入植株後主要累積在根部,其累積量往往是地上部的4到10倍。鎘濃度愈高植物體內累績的鎘量愈多。另外,較成熟植株的根部比幼嫩者具有較高的聚集能力。
經柱形色層法純化得到兩群鎘結合蛋白質,檢定酸性不穩定硫含量及比較氨基酸組成的比例,推測小分子量蛋白質是鎘結合勝?(Phytochelatins)。
zh_TW
dc.description.abstractYoung plants of Zinnia elegans in 20-day-old or 40-day-old were cultured in nutrient solutions containing 0, 1, 5, or 10 ppm cadmium for 10 days. Cakmium toxicity were reflected on morphological changes and isozyme patterns studied with electron microscopy and electrophoreses, respectively. The accumulation of cadmium in different parts of plant was detected by a Hitachi Z-6100 atomic absorption spectroscope. Phytochelatins were purified with both ion exchange and gel filtration column-chromatographic techniques and their amino acid composition was determined by aamino acid analyzer.
The major morphological changes of cadmium-treated plants are the retardation of plant growth, chlorosis of leaves and shrivelling of plants. The durataion for toxicity expression is reversedly to cadmium concentration. Cadmium cause the swelling and looseness of thylakoid membrane, the increment of plastoglobuli quantity and the reduction of stack members of chroloplast grana. Besides, electron dense aggregates are often observed within cell wall, plasmalemma and vacuole of cells in vascular bundles of leaves and roots. The isozyme patterns of acid phosphatase and peroxidase are altered depending on the cadmium concentration, but those of superoxide dismutase remain uniformity.
The quantity of cadmium accumulation on roots was 4-10 fold higher than that of shoots. The older plants occupy with the higher ability of cadmium accumulation than the younger ones. The depletion of cadmium in nutrient solution maximaly reveals at the sixth day after treatment. The depletion of cadmium in successive supplement is similiar to that of discontinuous treatment.
Two groups of cadmium-binding peptides purified with column chromatography were identified by acid-labile sulfur test and amino acid composition. Only the smaller molecular weight fraction of cadmium-binding peptide is phytochelatin.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:16:59Z (GMT). No. of bitstreams: 0
Previous issue date: 1993
en
dc.description.tableofcontents中 文 摘 要
英 文 摘 要
導 論……………………………………1
材 料 與 方 法……………………………………7
結 果……………………………………14
討 論……………………………………19
圖 表……………………………………24
參 考 文 獻……………………………………48
dc.language.isozh-TW
dc.title百日草對鎘毒害的反應與其鎘結合勝?的鑑定zh_TW
dc.titleCadmium Toxicity in Zinnia elegans and Identification of Its Cadmium-Binding Peptideen
dc.date.schoolyear81-2
dc.description.degree碩士
dc.relation.page63
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved