請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75970完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Chih-Huei Chen | en |
| dc.contributor.author | 陳志輝 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:16:53Z | - |
| dc.date.available | 2021-07-01T08:16:53Z | - |
| dc.date.issued | 1993 | |
| dc.identifier.citation | 陳封懷,胡?明 1979.中國珍珠菜屬植物的分類與分佈。植物分類學報17: 21-53. 陳封懷,胡?明 1989.Primulaceae (1): Lysimachieae-Primuleae.中國植物志,第59卷第一分冊。科學出版社,北京。 陳榮芳,沈淑雯,陳淑貞,江永智 1987.台灣大豆異構?類型之初步研究。生物科學30: 17-24. 黃生 1991.基因流傳與族群分化。生物科學34: 19-32. ----- 1992.基因浮動—兼談稀有物種的保育。生物科學35: 1-7. Arnold, M. L., C. M. Buckner, and J. J. Robinson. 1991. Pollen-mediated introgression and hybrid speciation in Louisiana irises. Proc. Natl. Acad. Sci. USA 88: 1398-1402. Ayala, F. J. 1977. The genetic structure of populations In: T. Dobzhansky, F. J. Ayala, G. L. Stebbins, and J. W. Valentine (eds.), Evolution, pp.20-56. W. H. Freeman and Company, San Francisco. Barton, N. H. and B. Charlesworth. 1984. Genetic revolutions, founder effects, and speciation. Ann. Rev. Ecol. Syst. 15: 133-164. ----. 1989. Founder effect speciation. In: D. Otte and J. A. Endler (eds.), Speciation and Its Consequences, pp.229-256. Sinauer Associates, Inc., Sunderland, Massachusetts. Bell, C. R. 1974. Reproductive biology and systematics. In: A. E. Radford, W. C. Dickison, J. R. Massey, and C. R. Bell (eds.), Vasclar Plant Systematics, pp. 269-284. Harper and Row, Publishers, New York. Bosbach, K. and H. Hurka. 1981. Biosystematic studies on Capsella bursa-pastoris (Brassicaceae): Enzyme polymorphism in natural populations. Pl. Syst. Evol. 137: 73-94. Boyle, T., C. Liengsiri, and C. Piewluang. 1990. Genetic structure of black spruce on two contrasting sites. Heredity 65: 393-399. Brown, A. H. D. and B. S. Weir. 1983. Measuring genetic variability in plant populations. In: S. D. Tanksley and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A, pp.219-240. Elsevier Science Publishers B.V., Amsterdam. Carlquist, S. 1974. Island Biology. Columbia Univ. Press, New York and London. Carson, H. L. and A. R. Templeton. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Ann. Rev. Ecol. Syst. 15: 97-131. Chen, L. F. O., M. C. Cheng, and S. C. G. Chen. 1987. Similarity and diversity of seed proteins in rice varieties. Bot. Bull. Academia Sinica 28: 169-183. Chou, C. H., C. M. Yang, and S. S. Sheen. 1984. A biochemical aspect of phylogenetic study of Bambusaceae in Taiwan. I. The genus Phyllostachys. Proc. Natl. Sci. Council ROC (B). 8: 89-98. ----, S. S. Sheen, and Y. H. Hwang. 1984. A biochemical aspect of phylogenetic study of bambusaceae in Taiwan. II. The genus Bambusa. Bot. Bull. Academia Sinica 25: 177-189. ---- and Y. H. Hwang. 1985. A biochemical aspect of phylogenetic study of Bambusaceae in Taiwan. III. The genera Arthrostylidium, Chimonobambusa, and Dendrocalamus. Bot. Bull. Academia Sinica 26: 155-170. ----, Y. H. Hwang, and S. Y. Hwang. 1986. A biochemical aspect of phylogenetic study of Bambusaceae in Taiwan. IV. The genera Arundinaria, Pseudosasa, Semiarundinaria, Shibataea, Sinobambusa, and Yushania. Bot. Bull. Academia Sinica 27: 117-131. ----, S. Y. Hwang, and F. C. Chang. 1987. Population study of Miscanthus floridulus (Labill.) Warb. I. Variation of peroxidase and esterase in 27 populations in Taiwan. Bot. Bull. Academia Sinica 28: 247-281. ---- and F. C. Chang. 1988. Population study of Miscanthus floridulus. II. Ecotypic variation of M. floridulus and M. transmorrisonensis as affected by altitude in Nantou, Taiwan. Bot. Bull. Academia Sinica 29: 301-314. ---- and Y. Y. Chen. 1990. Population study of Miscanthus floridulus. III. Population variation of M. floridulus in Green and Orchid Islets of Taiwan. Bot. Bull. Academia Sinica 31: 223-233. ----- and J. J. Ueng. 1992. Phylogenetic relationship among species of Miscanthus populations in Taiwan. Bot. Bull. Academia Sinica 33: 63-73. Clegg, M. T. and R. W. Allard. 1972. Patterns of genetic differentiation in the slender wild oat speices Avena barbata. Proc. Natl. Acad. Sci. USA. 69: 1820-1824. Coates, D. J. and R. J. Hnatiuk. 1990. Systematic and evolutionary inferences from isozyme studies in the Genus Eremaea (Myrtaceae). Aust. Syst. Bot. 3: 59-74. Crawford, D. J. 1985. Electrophoretic data and plant speciation. Syst. Bot. 10: 405-416. ----. 1990. Plant molecular systematics. Joun Wiley and Sons, Inc. Dobzhansky, T. 1977. Natural selection and populations, races, subspecies. In: T. Dobzhansky, F. J. Ayala, G. L. Stebbins, and J. W. Valentine (eds.), Evolution, pp.95-164. W. H. Freeman and Company, San Francisco. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. ---- and ----. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Endler, J. A. 1977. Geographic variation, speciation and clines. Princeton Univ. Press, Princeton, NJ. Futuyma, D. J. 1979. Evolutionary Biology. Sinauer Associates, Inc., Sunderland, Massachusetts. Goodwin, P. H. and S. L. Annis. 1991. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Applied and Environmental Microbiology 57: 2482-2486. Gottlieb, L. D. 1977. Electrophoretic evidence and plant systematics. Ann. Missouri Bot. Gard. 64: 161-180. Grant, V. 1981. Plant Speciation. 2nd edition. Columbia Univ. Press, New York. Hadrys, H., M. Balick, and B. Schierwater. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55-63. Hamrick, J. L. 1989. Isozymes and the analysis of genetic structure in plant populations. In: D. E. Soltis and P. A. Soltis. (eds.), Isozymes in Plant Biology, pp.87-105. Dioscorides Press, Portland, Oregon. —— and R. W. Allard. 1972. Microgeographical variation in allozyme frequencies in Avena barbata. Proc. Natl. Acad. Sci. USA. 69: 2100-2104. ----, Y. B. Linhart, and J. B. Mitton. 1979. Relationships between life history charcteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst. 10: 173-200. Hartl, D. L. 1980. Principles of Population Genetics. Sinauer Associates, Inc., Sunderland, Massachusetts. Hedrick, P. W. 1984. Population Biology. Jones and Bartlett Publishers, Inc. Heusden, A. W. and K. Bachmann. 1992. Genotype relationships in Microseris elegans (Asteraceae, Lactuceae) revealed by DNA amplification from arbitrary primers (RAPDs). Pl. Syst. Evol. 179: 221-233. Heywood, J. S. 1991. Spatial analysis of genetic variation in plant population. Ann. Rev. Ecol. Syst. 22: 335-355. Hong, Y. P., B. Ponoy, and J. E. Carlson. 1992. DNA fingerprinting of conifer genomes using RAPD markers. 6th Meeting of the International Conifer Biotechnology Working Group, Triangle Park, NC. Hsiao, J. Y. 1980. A biochemical systematic study of the genus Chamaecyparis in Taiwan. Proc. Natl. Sci. Council ROC (B). 4: 69-77. ----. 1981. A popuolational study of the genus Chamaecyparis in Taiwan based on chemical characters. Proc. Natl. Sci. Council ROC (B). 5: 171-180. Huang, S. 1992. Patterns of genetic variation in northern red oak (Quercus rubra L.) populations in midwestern United States. Ph.D. dissertation, Univ. of Missouri, St. Louis. Ingram, J. 1960. Notes on the cultivated Primulaceae. 1. Lysimachia. Baileya 8: 85-97. Ito, M. and M. Ono. 1990. Allozyme diversity and the evolution of Crepidiastrum (Compositae) on the Bonin (Ogasawara) Islands. Bot. Mag. Tokyo 103: 449-459. Kao, M. T. and C. E. DeVol. 1978. Primulaceae. In: H. L. Li, T. S. Liu, T, C. Huang, T. Koyama, and C. E. DeVol (eds.), Flora of Taiwan, vol.4, pp.68-89. Epoch Publ. Co., Taipei. Kephart, S. R. 1990. Starch gel electrophoresis of plant isozymes: a comparative analysis of techniques. Amer. J. Bot. 77: 693-712. Kiang, Y. T. and L. Wu. 1979. Genetic studies of esterases on the Taiwan wild rice population and cultivated rice. Bot. Bull. Academia Sinica 20: 103-116. ----, Y. C. Chiang, J. Y. H. Doong, and M. B. Gorman. 1987. Genetic variation of soybean germplasm. In: Proceedings of Intern. Symp. on Crop Exploration and Utilization of Genetic Resources, pp.93-99. Changhua Taichung DAIS. Lewis, P. O. 1991. Allozyme variation in the rare gulf coast endemic Polgonella macrophylla Small (Polygonaceae). Pl. Species Biol. 6: 1-10. Lewontin, R. C. 1991. Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics: mileston or millston Genetics 128: 657-662. Levene, H. 1949. On a matching problem arising in genetics. Ann. Math. Stat. 20: 91-94. Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65-95. Lowrey, T. K. and D. J. Crawford. 1985. Allozyme divergence and evolution in Tetramolopium (Compositae: Astereae) on the Hawaiian islands. Syst. Bot. 10: 64-72. Martin, G. B., J. G. K. Williams, and S. D. Tanksley. 1991. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc. Natl. Acad. Sci. USA 88: 2336-2340. Mayr, E. 1954. Changes of genetic environment and evolution. In: J. S. Huxley, A. C. Hardy, and E. B. Ford (eds.), Evolution As A Process. Allen and Unwin, London. Mitton, J. B., Y. B. Linhart, K. B. Sturgeon, and J. L. Hamrick. 1979. Allozyme polymorphisms detected in nature needle tissue of ponderosa pine. J. Hered. 70: 86-89. Murphy, R. W., J. W. Sites, Jr., D. G. Buth, and C. H. Haufler. 1990. Isozyme electrophoresis. In: D. M. Hillis and C. Moritz (eds.), Molecular Systematics, pp.45-126. Sinauer Associates, Inc., Sunderland, Massachusetts. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70: 3321-3323. ----. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. ---- and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273. Nevo, E., A. Beiles, D. Kaplan, E. M. Golenberg, L. Olsvig-Whittaker, and Z. Naveh. 1986. Natural selection of allozyme polymorphisms: a microsite test revealing ecological genetic differentiation in wild bailey. Evolution 40: 13-20. Ohwi, J. 1984. Primulaceae. In: Flora of Japan (in English), pp.715-723. Smithsonian Institution, Washington, DC. Rafalski, J. A., S. V. Tingey, and J. G. K. Williams. 1991. RAPD markers - a new technology for genetic mapping and plant breeding. AgBiotech News and Information 3: 645-648. Rohlf, F. J., J. Kishpaugh, and D. Kirk. 1982. Numerical taxonomy system of nultivariate statistical programs. State Univ. New York, Stony Brook, New York. Schaal, B. A. 1975. Population structure and local differentiation in Liatris cylindracea. Amer. Natur. 109: 511-528. Schnabel, A. and J. L. Hamrick. 1990. Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae). Amer. J. Bot. 77: 1060-1069. Shields, C. R., T. J. Orton, and C. W. Stuber. 1983. An outline of general resource needs and procedures for the electrophoretic separation of active enzymes from plant tissues. In: S. D. Tanksley and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A, pp.443-468. Elsevier Science Publishers B.V., Amsterdam. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787-792. Sneath, P. H. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman and Company. San Francisco. Soltis, D. E., C. H. Haufler, D. C. Darrow, and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J. 73: 9-27. Swofford, D. L. and R. K. Selander. 1981. A computer program for the analysis of allelic variation in genetics. J. Heredity 72: 281-283. Vallejos, C. E. 1983. Enzyme activity staining. In: S. D. Tanksley and T. J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A, pp.469-516. Elsevier Science Publishers B.V., Amsterdam. Walker, E. H. 1976. Primulaceae. In: Flora of Okinawa and the Southern Ryukyu Islands, pp.814-819. Smithsonian Institution Press, Washington, DC. Walters, T. W. and D. S. Decker-Walters. 1991. Patterns of allozyme diversity in the west indies cycad Zamia pumila (Zamiaceae). Amer. J. Bot. 78(3): 436-445. Welsh, J. and M. McClelland. 1990. Fingerpring genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213-7218. ---- and M. McClelland. 1991. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucl. Acids Res. 19: 5275- 5279. ----, C. Peterson, and M. McClelland. 1991. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucl. Acids Res. 19: 303-306. ----, R. J. Honeycutt, M. McClelland, and B. W. S. Sobral. 1991. Parentage determinatin in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theor. Appl. Genet. 82: 473-476. Wendel, J. F. and N. F. Weeden. 1989. Visualization and interpretation of plant isozymes. In: D. E. Soltis and P. S. Soltis (eds.), Isozymes in Plant Biology, pp.5-45. Dioscorides Press, Portland, Oregon. Wilde, J., R. Waugh, and W. Powell. 1992. Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 83: 871-877. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Workman, P. L. and J. D. Niswander. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Amer. J. Human Gene. 22: 24-49. Wright, S. 1931. Evolution in Mendelian population. Genetics 16: 97-159. ----. 1943. Isolation by distance. Genetics 28: 114-138. ----. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39-59. ----. 1965. The interpretation of population structure F-statistics with special regard to systems of mating. Evolution 19: 395-420. -----. 1978. Evolution and genetics of populations, Vol. 4. Variability within and among natural populations. Univ. of Chicago Press, Chicago. Zona, S., L. H. Rieseberg, R. L. Carter, and K. Doan. 1991. Isozyme diversity is low in Paeonia californica (Paeoniaceae). Pl. Species Biol. 6: 89-93. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75970 | - |
| dc.description.abstract | 茅毛珍珠菜(Lysimachia mauritiana Lam.)?一年生或多年生草本植物。分佈於日本、韓國、中國大陸、琉球、菲律賓、密克羅尼西亞、美拉尼西亞、波里尼西亞、夏威夷、印度、模?西斯、以及台灣。在台灣則?許多小族群散生於北部、東部、南部及綠島、蘭嶼、澎湖等離島之海濱,呈不連續之分佈。本研究顯示,茅毛珍珠菜屬於混合式的交配系統,不論自花授粉或異株異花授粉皆可稔,不行無性繁殖,在沒有昆蟲的媒介下有自花授粉的可能。八個採樣族群用15個引子做RAPD,共出現271條條帶,由所呈現的條帶型式來看,不同族群間確有差異,族群間確有遺傳上的分化,族群相似度由0.551至0.853,群叢分析樹狀圖顯示,八個族群大致上區分?北部海濱、鵝鸞鼻-蘭嶼、三仙台-澎湖等三個群叢。以同功異構?電泳檢視茅毛珍珠菜族群內及族群間的遺傳歧異度與分化程度,共染出13種酵素,觀察到22個基因座。多型性基因百分比(P)最高的是石門的族群,約22.7%,其餘族群只有4.5?13.6%,平均?9.64%,各基因座平均對偶基因個數(A)從1.4?1.0,平均?1.13個,皆遠低於一般的一至二年生,侷限分佈之雙子葉植物種類。而平均異質結合度(HO)?從0.045?0.086,平均期望異質結合度(HE)?從0.023?0.111,顯示出其族群內異質結合的比例很低,大部份基因座均已同質化。但族群間的比較則是在同一基因座,出現了不同的同質對偶基因(圖5),這使得族群間歧異度非常高,由F-statistics所得到的整體的FST?高達0.854,顯示出遺傳變異只有不到15%是族群內的,而超過85%是族群間的。由上述結果,我們得知台灣茅毛珍珠菜族群呈現出族群內變異少,族群間高度分化的遺傳結構。由FST?所推算的Nm?只有0.043,顯示族群間幾乎沒有基因流傳。創始者效應(founder effect)、基因漂變、及瓶頸效應的共同作用,很可能就是造成本省茅毛珍珠菜,成?族群內同質度高而族群間高度分化的遺傳結構的最重要因素。 | zh_TW |
| dc.description.abstract | Lysimachia mauritiana Lam. is an annual or perennial herb distributed in Japan, Korea, Mainland China, Ryukyu archipelago, the Philippines, Micronesia, Melanesia, Polynesia, the Hawaiian islands, India, Mauritius, and Taiwan. In Taiwan, many small and isolated populations are distributed on the seashores of Green island, Orchid island, Penghu islands and along the northern, eastern, and southern coastlines of the main island. The subject of this study is to be informed about the population genetic structure of Taiwanese L. mauritiana and the evolutionary determinants which affect it. Results from reproductive biology experiments show that L. mauritiana belongs to mixed mating type. It is self-or outcross-compatible, with no evidence of apomixis. Mechanical self-pollination could happen. According to the band patterns of the result from RAPD, all eight populations are different from each other genetically and there are genetic differentiations among populations. The population identities ranged from 0.551 to 0.853. Results from cluster analysis showed that these eight populations could be divided into three clusters: northren coastal region, Oluanpi-Orchid island, and Sanhsientai-Penghu. Starch gel electrophoresis was also used to analyze the allozyme variation of 22 loci of 13 isozymes. The average percentage of polymorphic loci (P) is 9.64% and the average number of alleles per locus (A) is 1.13. Both P and A values are lower than those cited for other plants of restricted distributions and indicate the homogenization of most loci. The average observed heterozygosities (HO) ranged from 0.045 to 0.086, and the average expected heterozygosities (HE) ranged from 0.023 to 0.111. Both HO and HE indicate the low rate of heterozygotes and thus low genetic diversity within populations. On the other hand, different populations possess different alleles in the same locus so the genetic diversity among populations is very high. FST value from F-statistics based on allele frequencies is 0.854. This means that among- population variation contributes to approximately 85% of total genetic variation, while within- population variation makes up only 15%. Variation in population genetic structure is low variation within populations, but high among populations. Nm value is 0.043, indicating there is hardly any gene flow between populations. Founder effect, genetic drift, and bottleneck effect could be the most important determinants of the population genetic structure of Taiwanese L. mauritiana. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:16:53Z (GMT). No. of bitstreams: 0 Previous issue date: 1993 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………i 英文摘要……………………………………………………iii 附表目次……………………………………………………v 附圖目次……………………………………………………vi 壹、前言……………………………………………………1 貳、背景資料……………………………………………………4 一、理論與觀念……………………………………………………4 二、前人研究……………………………………………………9 參、材料與方法……………………………………………………17 一、材料……………………………………………………17 二、方法……………………………………………………17 (一)生殖生物學……………………………………………………17 (二)Random Amplified Polymorphic DNA……………………………………………………20 (三)同功異構?澱粉凝膠電泳……………………………………………………24 肆、統計分析……………………………………………………27 一、RAPD部份……………………………………………………27 二、同功異構?部份……………………………………………………27 伍、結果……………………………………………………32 一、生殖生物學……………………………………………………32 二、RAPD部份……………………………………………………33 三、同功異構?部份……………………………………………………33 陸、討論……………………………………………………56 柒、參考文獻……………………………………………………67 附錄……………………………………………………77 | |
| dc.language.iso | zh-TW | |
| dc.title | 台灣茅毛珍珠菜族群遺傳結構之研究 | zh_TW |
| dc.title | The Study of Population Genetic Structure of Lysimachia mauritiana Lam. in Taiwan | en |
| dc.date.schoolyear | 81-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
