請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75809
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 陳紀樺 | zh_TW |
dc.date.accessioned | 2021-07-01T08:15:33Z | - |
dc.date.available | 2021-07-01T08:15:33Z | - |
dc.date.issued | 1991 | |
dc.identifier.citation | Akazawa T. and I.Hara-Nishimura. 1985. Topographic aspects of biosynthesis, extracellular secretion, and intracellular storage of protein in plant cell. Ann.Rev.Plant Physiol. 36:441-472. Akazawa T., T.Mitsui. and M.Hayashi. 1988. Recent progress in α-amylase biosynthesis. The Biochemistry of Plant. Vol.14 P.465-492. Atzorn R. and E.W.Weiler.1983.The rol of endogenous gibberellins in the formation of α-amylase by aleurone layers of germination barley caryopses. Planta. 159:289-299. Beck E. and P.Ziegler.1989. Biosynthesis and degradation of starch in higher plants. Ann. Rev. Plant physiol, Plant molecular biology. 40:95-117. Beers E.P. and S.H Duke. 1990. Cheracterization of α-amylase from shoots and cotyledons of pea (Pisum Sativum L.) seedlings. Plant Physiol.92:1154-1163. Bilderback D.E.1973.A simple method to differentiate between α- and β-amylase. Plant Physiol.51:594-595. Bush D.S.,Maria-Jesus Cornejo.,Chun-Nong Huang. and R.L.Jones.1986. Ca2+-stimulated secretion of α-amylase during development in barley aleurone protoplasts.Plant Physiol.82:566-574. Chandler P.M., J.A.Zwar., J.V.Jacobsen., T.J.V. Higgins. and A.S. Inglis. 1984. The effects of GA and ABA on α-amylase mRNA level in barley aleurone layers studies using an α-amylase cDNA clone. Plant Molecular Biology 3:407-418. Chrispeels M.J. and J.E.Varner.1966.Inhibtion of GA induced formation of α-amylase by abscisin II. Nature. 212:1066-1067. Chrispeels M.J. and J.E.Varner. 1967. Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol. 42:398-406. Daussant J.,S.Miyata.,T.Mitsui. and T.Akazawa.1983. Enzymic Mechanism of starch breakdown in germinting rice seeds.15:Immunochemical study on multiple forms of amylase. Plant Physiol. 71:88-95. Deikman J. and R. Jones. 1985. Control of α-amylase mRNA accumulation by GA and calcium in barley aleurone layers. Plant Physiol. 78:192-198. Deikman J. and R.L.Jones. 1986. Regulation of the accumulation of mRNA for α-amylase isoenzymes in barley aleurone. Plant Physiol. 80:672-675. Doehlert D.C. and S.H.Duke. 1983. Specific Determination of α -amylase activity in crude plant extracts containing β-amylase. Plant Physiol.71: 229-234. Dure L.S.1960.Site of origin and extent of avtivity of amylases in maize germination. Plant Physiol. 35:925-934. Filner P. and J.E.Varner. 1967. A test for de novo synthesis of enzymes: density labeling with H218O of barley α-amylase induced by gibberellic acid. Proc.Nati.Acad.Sci.USA. 58:1520-1526. Fincher G.B. 1989. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Ann. Rev. Plant physiol, Plant molecular biology. 40:305-346. Fischer E.H. and E.A.Stein.1960. α -Amylase In: The Enzyme Vol.4 pp:345-368 Goldstein L.D. and P.H Jennings.1975.The occurrenec and development of amylase enzymes in incubated de-embryonated maize kernels. Plant physiol. 55: 893-898. Greenwood C.T. and E.A.Milne.1968. Starch-degrading and synthesis enzymes. Advances in Carbohydrate Chemistry. Vol.23 P.281 Gubler F., A.E. Ashford. and J.V. Jacobsen. 1987. The release of α -amylase through gibberell in-treated barley aleurone cell walls. Planta. 172:155-161. Harvey B.M.R. and A.Oaks. 1974. The hydrolysis of endosperm protein in Zea Mays. Plant Physiol.53: 453-457. Higgins T.J.V., J.A.Zwar. and J.V.Jacobsen. 1976. Gibberellic acid enhances the level of translatable mRNA for α-amylase in barley aleurone layers. Nature. 260:166-168. Higgins T.J.V., J.V.Jacobsen. and J.A.Zwar.1982. GA and ABA modulate protein systhesis and mRNA levels in barley aleurone layers. Plant Mol. Biol. 1:191-215. Ho D.T-H. and J.E.Varner. 1976. Respones of barley aleurone layers to abscisic acid. Plant. Physiol. 57:175-178. Hsiu J., E.H.Fischer. and E.A.Stein. 1964. Alpha-amylase as calcium-metalloenzymes II. Calcium and the catalytic activity. Biochemistry 3:61-66. Ingle J. and R.H.Hageman. 1975. Metabolic changes associated with the germination of corn III. Effect of gibberellic acid on endosperm metabolism. Plant Physiol. 40:672-675. Jacobsen J.V., J.G.Scandalios.and J.E.Varner. 1970. Multiple forms of amylase induced by gibberellic acid in isolated barley aleurone layers. Plant Physiol. 45:467-371. Jacobsen J.V. and T.J.V.Higgins.1982. Characterization of the α -amylase synthesized by aleurone layers of himalaya barley in response to gibberellic acid. Plant Physiol.70:1647-1653. Jacobsen J.V. and L.R.Beach.1985. Control of transcription of α-amylase and rRNA genes in barley aleurone protoplasts by gibberellin and abscisic acid. Nature. 316:275-277. Jones R.L. 1969. GA and fine structure of barley aleurone cells. Planta. 88:73-86. Jones R.L. 1973. Gibberellic acid and ion release from barley aleurone tissue. Plant Physiol.52:303-308. Jones R.L.1980. Quantiative and qualitative changes in the endoplasmic reticulum of barley aleurone layers. planta. 150:70-81. Jones R.L. and J.V.Jacobsen. 1982. The role of the endoplasmic reticulum in the synthesis and transport of α-amylase in barley aleurone layers. Planta. 156:421-432. Jones R.L. and J.V.Jacobsen.1983. Calcium regulation of the secretion of α-amylase isoenzymes and other proteins from barley aleurone layers. Planta. 158:1-9. Jones R.L. and J.Carbonell. 1984. Rugulation of the synthesis of barley aleurone α-amylase by gibberellic acid and calciumn ions. Plant Physiol.76: 213-218. Juliano B.O. and J.E.Varner. 1969. Enzymic degradation of starch granules in granules in the cotyledons of germinating peas.Plant.Physiol.44:886-892. Koshiba T. and T.Minamikawa. 1981. Purification by affinity chromatography of α-amylase - A main amylase in cotyledon of germinating Vigna mungo seeds. Plant Cell Physiol. 22:979-987. Levi C. and M.Gibbs. 1984. Starch degradation in synchronously grown Chlamydomonas reinhardtii and characterization of the amylase. Plant Physiol. 74:459-463. Locy R. and H.Kende. 1978. The mode of secretion of α-amylase in barley aleurone layers. Planta. 143:89-99. Manning G.B. and L.Leon Campbell.1961. Thermostable α-amylase of Bacillus Stearothermophilus. Journal of Biological chemistry. 236:2952-2957. MacGregor A.W. and J.E.Morgan. 1986. Hydrolysis of barley starch granules by α-amylase from barley malt. Cereal Foods World. 31:688-693. MacGregor A.W., B.A.Marchylo. and J.E.Kruger. 1988. Multiple α-amylase components in germinated cereal grains determined by isoelectric focusing and chromatofocusing. Cereal chemistry. 65:326-333. Miyata S. and T.Akazawa. 1982. Enzymic mechanism of starch breakdown in germinating rice seeds. 12. Biosysthesis of α-amylase in relation to protein glycosylation. Plant Physiol.70:147-153. Mitsui T., J.T.Christeller., I.Hara-Nishimura. and T.Akazawa. 1984. Possible roles of calcium and calmodulin in the biosynthesis and secretion of α-amylase in rice seed scutellar epithelium. Plant Physiol. 75:21-25. Moll A.B. and R.L.Jones .1982. α-amylase secretion by single barley aleurone layers. Plant Physiol. 70:1149-1155. Mozer J.T. 1980. Partial purification and characterization of the mRNA for α-amylase from barley aleurone layers. Plant Physiol. 65:834-837. Mozer T.J. 1980. Control of protein synthesis in barley aleurone layers by the plant hormones GA and Abscisic acid. Cell. 20:479-485. Mundy J., A.Brandt. and G.B.Fincher .1985. Messenger RNAs from the scutellum and aleurone of germinating barley encode (1→3,1→4)-β-D-Glucanase α-amylase and carboxypeptidase. Plant Physiol. 79: 867-871. Muthukrishnan S. ,G.R.Chandra. and E.S.Maxwell.1983. Hormonal control of α-amylase gene expression in barley. Journal Biological chemistry. 258:2370-2375. Muthukrishnan S.,B.S.Gill.,M.Swegle.and G.R.Chandra. 1984. Structural genes for α-amylase are located on barley chromosomes 1 and 6. Journal biological Chemistry.259:13637-13639. Nolan R.C., L-S. Lin. and D.T-H.Ho.1987.The effect of abscisic acid on the differential expression of α-amylase isozymes in barley aleurone layers. Plant Mol. Biology. 8:13-22. Okita T.W. and J.Preiss. 1980. Starch degradation in spinach leaves. Plant Physiol. 66:870-876. Okamoto K. and T.Akazawa. 1979. Enzymic mechanisms of starch breakdown in germinating rice seeds.7. Amylase formation in the epithelium. Plant Physiol. 63:336-340. Okamoto K., H.Kitano. and T.akazawa. 1980. Biosynthesis and excretion of hydrolases in germination cereal seeds. Plant Cell Physiol. 21:201-204. Okamoto K., T.Murai., G.Eguchi., M.Okamoto. and T.Akazawa. 1982. Enzymic mechanism of starch breakdown in germination rice seeds. II. Ultran-structure changes in scutellum epithelium. Plant Physiol. 70:905-911. Ou-Lee Tsai-mei., R.Turgeen. and R.Wu. 1988. Interaction of a GA-induced factor with the upstream region of an α-amylase gene in rice aleurone tissue. Proc.Nati.Acad.Sci.USA. 85:6366-6369. Paleg G.L.1960.Physiological effects of Gibberellic acid. I. on carbohydrate metabolism and amylase activity of barley endosperm. Plant. Physiol. 35: 293-299. Paleg L.G.1960.Physiological effects of Gibberellic acid. II. starch hydrolyzing enzymes of barley endosperm. Plant. Physiol. 35:902-906. Paleg L.G.1960.Physiological effects of Gibberellic acid. III. observations on its mode of action on barley endosperm. Plant Physiol. 36:829-837. Ranki H. and T.Sopanen.1984.Secretion of α-amylase by the aleurone layer and the scutellum of germination barley grain. Plant Physiol. 75:710-715. Rogers J.C. 1985. Conserved amino acid seguence domains in alpha-amylase from plant, mammals and bacteria. Biochemical and Biophysical research Communications. 128:470-476. Salas E. and L.Cardemil.1986.The multiple form of α-amylase enzyme of the Araucaria Species of south america: A.araucana (mol) Koch and A.angustifolia (Bert) O. Kutz. Plant Physiol. 81:1062-1068. Scandalios J.G. 1966.Amylase isozyme polymorphism in maize. Planta. 69:244-248. Shaw Jei-Fu. and Lea-Yea Chuang.1982.Studies on the α-amylase from the germinated rice seeds. Bot Bull Academia Sinica. 23:45-61. Sopanen T. and C.Lauriere.1989. Release and activity of bound α-amylase in a germinatiing barley grain, Plant. Physiol. 89:244-249. Stein A.E. and E.H.Fischer. 1958. The resistance of α-amylase towards proteolytic attack. Journal of Biological Chemistry. 232:876-878. Stein A.E., J.Hsiu. and E.H.Fischer. 1964. Alpha-amylase as calcium-metalloenzymes I. Preparation of calcium-free apoamylase by chelation and electrodialysis. Biochemistry 3:56-61. Steup M., 1988. Starch degradtion. The Biochemistry of Plants. Vol.14 p.254-295. Tanaka Y. and T.Akazawa. 1970. α-amylase isozymes in gibberellic acid-treated barley half-seeds. Plant. Physiol. 46:586-591. Tkachuk R. and J.E.Kruger. 1974.Wheat α-amylase. II. Physical cheracterization. Cereal chemistry. 51: 508-529. Tomura H. and T. Koshiba. 1985. Biosynthesis of α-amylase in Vigna mungo cotyledon. Plant. Physiol 79:939-942. Towbin H., T.Staehelin. and J.Gordon. 1979. Electro-phoretic transfer of protein from polyacrylamide gel to nitrocellulose sheets: procedure and some applications. Proc.Nati.Acad.Sci.USA. 76:4350-434. Tronier B. and R.L.Ory. 1970. Association of bound beta-amylase with protein bodies in barley. Cereal chemistry. 47:464-471. Vallee B.L,E.A.Stein.,W.N.Sumerwell.and E.H.Fischer. 1959. Metal content of α-amylase of Various origins. Journal of Biological Chemistry. 234:2901-2905. Varner J.E. 1964. Gibberellic acid controlled synthesis of α-amylase in barley endosperm. Plant Physiol. 39:413-415. Varner J.E. and R.M.Mense. 1972. Characteristics of the process of enzyme release from secretory plant cells. Plant.Physiol. 49:187-189. Wang S-M. and A.H.C.Huanq. 1987. Biosynthesis of lipase in the scutellum of maize kernel. Journal of Biological Chemistry. 262:2270-2274. Weber K. and M.Osborne. 1975. Proteins and sodium dodecyl sulfate: molecular weight determination on polyacrylamide gel and related procedure. In: H. Neurath, R.L. Hills (eds.) The proteins. Academic Press, New York, p180-225. White C.A. and J.F.Kennedy.1986. Obligosaccharides. In: Carbohydrate Analysis: practical approach. eds. Chaplin M.F. and J.F.Kennedy. p.42.IRL Press. 陳勝航(1990).甘藷發芽過程中醣類代謝相關酵素與醣類含量的變化.國立臺灣大學農業化學研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75809 | - |
dc.description.abstract | 利用澱粉薄層技術觀察萌芽的玉米種子,發現澱粉水解活性最早出現在內子葉內側與胚乳交界處的上皮細胞(epithelium),糊粉層在第二天之後也逐漸?生澱粉水解?;隨著幼芽之生長,糊粉層在胚乳的澱粉降解上漸趨重要。在萌發的種子中,α-澱粉?的活性佔總澱粉水解活性的70-80%。整個萌芽期間,玉米穀粒出現了五個澱粉水解?,Amyl-1,2,3,4,5,其中Amyl-5是β-澱粉?。 自內子葉及胚乳(糊粉層和澱粉質胚乳)中各提純了兩個α-澱粉?,分別命名為P-I, P-II和E-I, E-II; P-I與E-I對應於Amyl-3, P-II與E-II則是Amyl-4。由定性分析之結果觀察,P-I與E-I具有極相同的性質,而P-II則與E-II相似。(i)P-I和E-I的分子量均為49KD,且在膠體電泳時表現相同的泳動率;P-II和E-II的分子量則同為51KD。(ii)P-I和E-I的最適反應pH範圍為5.5-6.5; P-II和E-II則是pH6.0-7.0。(iii)此四個α-澱粉?的反應最適溫度皆為60℃,但P-II和E-II的酵素活化能(Ea),溫度係數(Q10)及耐熱性分別比P-I和E-I略高一點。P-I和E-I的Ea為7.35,5,91 Kcal/mole,Q10為1.41,1.27;P-II和E-II的Ea則是11.46,10.32 Kcal/mole,Q10為1.55。1.47。(iv)玉米α-澱粉?的活性表現並不需要鈣離子,因此也不受EGTA的抑制。(v)鈣離子具有保護α-澱粉?抗拒熱變性的作用;在鈣離子存在時,α-澱粉?經過70℃/十五分鐘的處理,還保有60-70%的活性;除去鈣離子後則完全喪失了抗熱性,若再添加鈣鹽,則可以穩定α-澱粉?分子而恢復其抗熱性。鍶離子可以部份取代鈣離子穩定α-澱粉?分子的效果。(vi)四種α-澱粉?的活性均受到HgCl2,pCMB的抑制,其中P-II, E-II所受到的抑制較P-I, E-I嚴重。(vii)免疫轉印的結果顯示,四個α-澱粉?與其所誘導的四組抗體血清彼此間有交叉反應,表示四個純化的α-澱粉?分子具有相似的抗原決定基。 對去胚種子分離所得到的糊粉層而言,合成及分泌α-澱粉?,並不一定要求外加GA,但是外加GA仍然有明顯的促進作用;反之,ABA則有明顯的抑制效果。而內子葉對於植物荷爾蒙處理的反應與糊粉層並不盡相同,雖然添加GA時會有像糊粉層一樣的促進效果,但是ABA的施予卻完全不抑制α-澱粉?的合成。顯然,在玉米種子之內子葉和糊粉層組織中,α-澱粉?基因表現的調控機制並不完全相同,此有待進一步的探討。 | zh_TW |
dc.description.abstract | The endosperm of maize kernel contains a large amount of starch. Upon seed germination, amylolytic enzymes are synthesized and secreted into endosperm by scutellum and aleurone layer to hydrolyze starch. By using starch-film technique to detect the appearance of amylase in the germinating maize kernel, the sequential occurence of hydrolytic activity was demonstrated along the germination course. One day after the beginning of imbibition, The starch-digestive zone started to show at the interface between scutellum and starchy endosperm, where the epithelium of scutellum is. The amylolytic activity of aleurone layer followed a day later and spread throughout the whole endosperm four days after imbibition. During the germination period, about 70 to 80 % of total amylolytic activity was contributed by α-amylase. Five amylolytic isozymes, namely Amyl-1,2,3,4, and 5, were separated and identified on native polyacrylamid gel by activity staining after electrophoresis. Two major α-amylases were purified from each 5-day germinating scutellar and endosperm tissue, designated as P-I/P-II and E-I/E-II, respectively. P-I and E-I were equivalent to Amyl-3, P-II and E-II were equal to Amyl-4. The properties of P-I were very similar to that of E-I, and those of P-II and E-II were alike. (i) The molecular weight of P-I is the same as E-I of 49KD; P-II and E-II were 51KD. (ii) The optimal pH for P-I and E-1 was ranging from pH 5.5 to 6.5; P-II and E-II were optimal from pH 6.0 to pH 7.0. (iii) The optimal reaction temperature for all four enzyme preparations was 60℃; while the activation energy and heat tolerance of P-II and E-II were much higher than those of P-I and E-I. (iv) Calcium ion was not required for enzyme avtivities, because these amylase preparations were not inactivated by removing of Calcium ion. (v) α-amylases were rather heat resistant, and Calcium ion was required for heat tolerance of enzymes. In the presence of 10 mM of Calcium ion, about 70% of activity was retained after heating at 70℃ for 15 min. After the removal of Calcium ion by dialysis, α-amylases became sensitive to heating. And re-introduction of Calcium ion into Calcium-depleted enzyme preparation could readily restore the thermotolerance of enzymes. Besides, Strontium ion could partially replace Calcium ion. (vi) Addition of HgCl2 and pCMB caused the inactivation of all four ezynme-preparations, and P-II and E-II were more sensitive than P-I and E-I. (vii) Four antibodies were directed to against P-I, P-II, E-I and E-II, respectively. The positive cross-reactions among 4 enzyme fractions and 4 antibody preparations indicated that four enzyme molecules possessed the immunochemical similarity. Plant hormone, GA, was not essentially required for the expression of α-amylase activity in either aleurone and scutellum. Whereas, the addition of GA3 did stimulate the synthesis and secretion of α-amylase. The treatment of ABA reduced the α-amylase activity by inhibiting the protein synthesis of α-amylase in aleurone layer. On the other hand, ABA did not caused the reduction of newly synthesized α-amlase. This differential effects implied that the regulation of α-amylase expression inside scutellum might bedifferent from that in aleurone layer. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:15:33Z (GMT). No. of bitstreams: 0 Previous issue date: 1991 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………i 英文摘要……………………………………………………iii 緒 言……………………………………………………1 材料與方法 一.玉米萌芽期澱粉水解?活性的探討……………………………………………………9 二.α-澱粉?之純化……………………………………………………11 三.聚丙烯醯胺膠體電泳檢定法……………………………………………………13 四.水解?物的薄層色層分析……………………………………………………14 五.α-澱粉?之定性分析……………………………………………………15 六.α-澱粉?耐熱性的測定……………………………………………………16 七.α-澱粉?抗原的純化與抗體的製備……………………………………………………17 八.抗體-抗原的抑制作用……………………………………………………18 九.免役轉印法……………………………………………………19 十.陽離子及GA、ABA對酵素活性與分泌的影響……………………………………………………21 結 果 一.萌芽期間澱粉水解?的出現……………………………………………………24 二.α-粉?的純化……………………………………………………28 三.α-澱粉?的定性分析……………………………………………………30 四.抗體的製備和免役化學分析……………………………………………………55 五.α-澱粉?的活性表現與分泌……………………………………………………60 討 論……………………………………………………71 參考文獻……………………………………………………83 | |
dc.language.iso | zh-TW | |
dc.title | 玉米穀粒α- 澱粉?之純化與定性 | zh_TW |
dc.title | Purification and Characterization of α-Amylase In Germinating Maize Kernels | en |
dc.date.schoolyear | 79-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 92 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。