Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75807
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author郭金龍zh_TW
dc.date.accessioned2021-07-01T08:15:32Z-
dc.date.available2021-07-01T08:15:32Z-
dc.date.issued1991
dc.identifier.citation1.馬淑芳,1988,低溫逆境對耐寒和不耐寒植物之外形態、內部微細構造和蛋白質合成的比較。國立臺灣大學理學院植物科學研究所碩士論文。
2.林綠瑩,1939,低溫逆境對綠豆白化幼曲生長、根尖顯微構造、及細胞膜、液泡膜的影響。國立臺灣大學理學院植物科學研究所碩士論文。
3.張孟瑤,1989,低溫馴化對綠豆幼苗生理與生化改變的影響。國立臺灣大學理學院植物科學研究所碩士論文。
4.莊榮輝,1985,水稻蔗糖合成?之研究-其純化、生物化及免疫學研究。國立臺灣大學農業化學研究所博士論文。
5. Alain Puppo, Lilliana Diaitrijevic and Jean Rigaud (1989) Superoxide dismutase and Catalase activity in purified Frankia vesicles. Physiol Plant, 77:308-311.
6. Allen, J.F., Hall, D.O. 1973. Superoxide reduction as a mechanism of ascorbate stimulated oxygen uptake by isolated chloroplasts. Biochem. Biophys. Res. Commun. 52:856-62.
7. Amihud Borochov, Mark A. Walker, Edward J. Kendall, K. Petter Pauls. and Bryan D. Mckersie. (1987) Effect of a freeze - thaw cycle on properties of microsomal membranes from wheat. Plant physiol. 84:131-134.
8. Asada, K., Kiso, K. 1973. The photooxidation of epinephrine by spinach chloroplasts and its inhibition by superoxide dismutase: evidence for the formation of superoxide radicals in chloroplasts. Agric. Biol. Chem. 37:453-54.
9. Asada, K., Takahashi, M. and Nagate, M, (1974) Assay and inhibitors of spinach superoxide desmutase. Agric. Biol. Chem. 38:471-473.
10. Asada, K., Takahashi, M., Tanaka, K., Nakano, Y. 1977. Formation of active oxygen and its fate in chloroplasts. Japan Sci. Soc.Press.313 pp.
11. Asada, K., Urano, M. and Takahashi, H. (1973) Subcellular location of superoxide dismutase in spinach leaves and preparation and properties of crytalline spinach superoxide dismutase. Eur. J. Biochem. 36:257-266.
12. Badger. M.R., Andrews, T.J., Canvin, D.T., Lorimer, G.H.1980. Interactions of hydrogen peroxide with ribulose bisphosphate carboxylase oxygenase. J. Biol. Chem. 255:7870-75.
13. Barbara Demming-Adams, Klaus Winter, Almuth Kriiger, and Franzchristian Czygan. (1989) Zeaxanthin Syhthesis, energy dissipation, and photoprotection of photosystem II at chilling temperatures. (1989) Plant Physiol. 90:894-898.
14. Barbara Sochanowicz and Z. Kaniuga. (1979) Photosynthetic apparatus in chilling-sensitive plants. Planta 145:137-143.
15. Baum, J.A., chandlee, J.M. and Scandalios. J.G. (1983) Purification and partial characterization of a genetically-defined superoxide dismutase (SOD-1) associated with maize chloroplasts. Plant Physiol. 73:31-35.
16. Beauchang, C.O. and Fridovich, I. (1973) Isozymes of superoxide dismutase from wheat germ. Biochiz. Biophys. Acta 317:50-64.
17. Bielski, B.H., Chan, P.C. 1973. Enzyme-catalyzed free radical reactions with nicotinamide-adenine nucleotides. I. Lactate dehydrogenase-catalyzed chain oxidation of bound NADH by superoxide redicals. Arch. Biochem. Biophys. 159:873-79.
18. Binh Nguyen-Quoc, Micheline Krivitzky, Steven C. Huber, and Alain Lecharny. (1990) Sucrose synthase in developing maize leaves. Plant Physiol. 94: 516-523.
19. B.Z. Siegel and A.V. Galston (1966) The isoperoxicases of Pisum sativum. Plant Physiol. 42:221-226.
20. Brennan, T., Anderson, L.E. 1980. Inhibition by catalase of dark-mediated glucose-6-phosphate dehydrogenase activation in pea chloroplasts. Plant Physiol. 66:815-17.
21. Carmen Marana, Francisco Garcia-Olmedo and Pilar Carbonero. (1990) Differential expression of two types of sucrose synthase encoding genes in wheat in response to an-aerobiosis, cold shock and light. Gene. 88:167-172.
22. Charles Beauchamp and Irwin Fridorich (1971) Superoxide dismtase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276-287.
23. Charles. S. A., Halliwell, B. 1980.Effect of hydrogen peroxide on spinach chloroplast fructose bisphosphatase. Biochem. J.189:373-76.
24. C.O. Beauchamp and Irwin Fridorich. (1973) Isozymes of Superoxide dismutase from wheat germ. Biochim. Biophys. Acta, 317:50-64.
25. Debra A. Clare, Minh NGoc Duong, Douglas Darr, Frederick Archibald, and Irwin Fridorich. (1984) Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for Catalase. Anal. Biochem. 140:532-537.
26. Douglas Graham and Brian D. Patterson. (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Ann. Rev. Plant Physiol. 33:347-372.
27. Duke, M.V. and Salin, M.L. (1985) Purification and characterization of an iron-cotaining superoxide dismutase from a enkaryote, Gingyo biloba. Arch. Biochem. Biophys. 243:305-314.
28. Edward J. Kendall and Bryan D. Mckersie (1989) Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant. 76:86-94.
29. Edwin Welles Kellogg, III and Irwin Fridovich. (1975) Superoxide, hydrogen Peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Bio. Chem. 250:8812-3817.
30. Engeus, H., Heber, U., Matthiesen, U., Kirk, M. 1975. Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide. Biochim. Biophys. Acta 408:252-68.
31. Elstner, E.F., Frommeyer, D. 1978. Production of hydrogen peroxide by photosystem II of spinach chloroplast lamellae. FEBS Lett. 86:143-46.
32. Elstner, E.F., Frommeyer, D. 1979. Analysis of different mechanisms of photosynthetic oxygen reduction. Z. Naturforsch. Teil C 33:276-79.
33. Elstner, E.F., Heupel, A. 1973. On the decarboxylation of a-keto acid by isolated chloroplasts. Biochim. Biophys. Acta 325:182-88.
34. Elstner, E.F. and Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. 70:616-620.
35. Elstner, E.F., Heupel, A. 1975. Lamellar superoxide dismutase of isolated chloroplasts. Planta 123:145-54.
36. Elstner, F.F., Heupel, A., Vaklinova, S. 1970. Uber die Oxidation von Hydroxylamin durch isolierte Chloroplasten und die mogliche Funktion einer Peroxidase aus Spinatblattern bei der Oxidation von Ascorbinsaure und Glykolsaure. Z. Pflanzenphysiol. 62:184-200.
37. Elstner, E.F., Konze, J.R., Selman, B.R., Stoffer, C. 1976. Ethylene formation in sugar beet leaves. Evidence for the involvement of 3-hydroxytyramine and phenoloxidase after wounding. Plant Physiol. 58:163-68.
38. Elstner, E.F., Kramer, R.1973. Role of the superoxide free redical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation. Biochim. Biophys. Acta 314:340-53.
39. Elstner, E.F., Osswald, W., Konze, J.R. 1980. Reactive oxygen species: Electron donor-hydrogen peroxide complex instead of free OH radicals FEBS Lett. 121:219-21.
40. Elstner, E.F., Saran, M., Bors, W., Lengfelder, E. 1978. Oxygen activation in isolated chlorpplasts. Mechanism of ferredoxin-dependent ethylene formation from methionine. Eur. J. Biochem. 89:61-66.
41. E.M. Gregory and I. Fridorich. 1974. Visualization of catalase on acrylamide gels. Anal. Biochem. 58:57-62.
42. Epel, B.L., Neumann, J.1973. The mechanism of the oxidation of ascorbate and Mn by chloroplasts. The role of the radical superoxide. Biochim. Biophys. Acta 325:520-29.
43. Erich F. Elstner and A. Heupel. 1975. Lamellar superoxide dismutase of isolatecd chloroplasts. Planta. 123:145-154.
44. Erich F. Elstner. 1982. Oxygen Activation and Oxygen Toxicity. Ann. Rev. Plant Physiol. 33:73-96.
45. Fathey Sarhan and Normand Chevrier. 1985. Regulation of RNA synthesis by DNA-dependent RNA polymerases and RN ases during cold acclimation in winter and spring wheat. Plant physiol. 78:250-255.
46. Flohe, L., Loschen, G., Azzi, A., Richter, Ch. 1977 Superoxide radicals in mitochondria. London: Academic.568 pp.
47. Foster, J.G., Hess, J.L. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-87.
48. Foyer, C.H., Halliwell, B.1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25.
49. Fridovich, I. 1976. Oxygen radicals, hydrogen peroxide and oxygen toxicity. New York: Academic.
50. Fridovich, I. 1977. Chemical aspects of superoxide radical and of superoxide dimutases. Japan Sci. Soc.Press.313 pp.
51. Fumiyuki Yamakura. 1976. Purification, Crystallzation and properties of iron-containing superoxide dismutase from Pseudomonas Ovalis. Biochim. Biophys. Acta. 422:280-294.
52. Gail L. Matters and John G. Scandalios. 1987. Synthesis of isozymes of superoxide dismutase in Maize leaves in response to O, SO, and elevated O. J. Exp. Bot. 38:842-852.
53. George Yelenosky and Charles L. Guy. 1989. Freezing tolerance of Citrus, Spinach, and Petunia leaf tissue. Plant Physiol. 89:444-451.
54. Giamopolitis, C.N. and Ries, A.K. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant physiol. 59:309-314.
55. Graciela L. Salrno and Horacio G. Pontis. 1989. Raffinose synthesis in Chlorella vulgaris cultures after a cold chock. Plant Physiol.89:648-651.
56. Graham, D. and Patterson, B.D. 1982. Response of Plants to low nonfreezing temperature: proteins, metabolism and acclimation. Annu. Rev. Plant Physiol. 33:347-372.
57. Groden, D., Beck, E. 1979. H2O2 destruction by ascorbate dependent systems from chloroplasts. Biochim. Biophys. Acta 546:426-35.
58. Gross, G.G. 1980. The biochemistry of lignification. Adv. Bot. Res. 8:25-63.
59. Gunnar Wingsle, Per Gardestron, Jan-Erik Hallgren, and Seanislaw Karpinski. 1991. Isolation, purification, and subcellular location of isozymes of superoxide dismutase from Scots Pine needles. Plant Physiol. 95:21-28.
60. Halliwell, B. 1977. Superoxide and hydroxylation reactions.
61. H.A.M. Bulder, W.R. Van der Leij, E.J. Speek, P.R. Van Hasselt and P.J.C. Kuiper. 1989. Interactions of drought and low temperature stress on at suboptimal temperature. Physiol. Plant. 75:362-368.
62. Hassan, H.M., Fridovich, I.1977.Regulation of the synthesis of superoxide dismutase in Escherichia coli. J. Biol. Chem. 252:7667-72.
63. Hayakawa, T., Kanematsu, S. and Asada, K. 1984. Occurrence of CuZn-superoxide dismutase in the intrathylakoid space of spinach chloroplasts. Plant Cell Physiol.25:883-889.
64. Hayakawa, T., Kanematsu, S. and Asada, K. 1985. Purification and characterization of thylakoid-bound Mn-superoxide dismutase in spinach chloroplasts. Planta 166:111-116.
65. Hinnman, R.L., and Lang, J. (1965). Peroxidase catalyzed oxidation of indole-3-acetic acid. Biochemistry 4, 144-158.
66. Howard M. Steinman. 1982. Copper-Zinc superoxide dismutase from Caulobacter cerescentus CB15. J.Biol.Chem.257:10283-10293
67. Hwei-Hwang Chen and Paul H. Li. 1980. Biochemical changes in tuberbearing Solanum species in relation to frost hardiness during cold acclimation. Plant Physiol. 66:414-421.
68. J. A. Tognetti, G. L. Salerno, M. D. Crespi and H. G. Pontis. 1990. Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. Physiol. Plant. 78:554-559.
69. J. Lumsden and D.O. Hall (1974) Soluble & Membrane-bound superoxide dismutase in a blue green algae and spinach. Biochem. Biophys. Res. Comm. 58:35-41.
70. James P. Spychalla and Sharon L. Desborough 1990. Superoxide dismutase, Catalase, and α-tocopherol content of stored Potato tubers. Plant Physiol. 94:1214-1218.
71. Jan Kwiatovsk: and Zbigniew Kaniuga. 1986. Isolation and characterization of cytosolic and chloroplast isoenzymes of CuZn-Superoxide dismutase from tomato leaves and their relationships to other CuZn-superoxide dismutases. Biochim. Biophys. Acta. 874:99-115.
72. Janet Reed Scioli and Barbara A. Zilinskas. 1988. Cloning and characterization of a cDNA encoding the chloroplastic copper/Zinc-superoxide dismutase from pea. Proc. Natl. Acad. Sci. USA. 85:7661-7665.
73. J. Lumsden and D.O. Hall. 1974. Soluble and membrane-bound Superoxide dismutase in a Blue-green alga and Spinach. Biochem. Biophys. Res. Comm. 58:35-41.
74. Joseph P. Martin, Jr and Irwin Fridorich. 1981. Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiont photobacter leiognathi. J. Bio. Chem. 256:6080-6089.
75. Joyce G. Foster and John. Hess. 1980. Response of superoxide dismutase and Glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487.
76. Kaiser, W. 1976. The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplast. Biochim. Biophys. Acta 440:476-82.
77. Kirk L. Parkin and Shu-Jung Kuo.1989. Chilling-induced lipid degradation in cucumber fruit. Plant Physiol. 90:1049-1056.
78. Kitagawa, Y., Tsunasawa, S., Tanaka, N., Katsube, Y., Sakiyama, F. and Asada, K. 1986. Amino acid sequence of copper, zinc-superoxide dismutase from spinach leaves. J. Bio-chem. 99:1049-1056.
79. Kono, Y., M.A., Asada, K. 1976. Oxidation of manganous pyrophosphate by superoxide radicals and illuminated spinach chloroplasts. Arch. Biochem. Biophys. 174:454-62.
80. Kozi Asada, Masa-aki Takahashi and Mieko Nagate. 1974. Assay and inhibitors of spinach superoxide dismutase. Agr. Biol. Chem. 38:471-473.
81. Kwiatowski, J. and Kaniuga, Z. 1986. Isolation and characteriration of cytosolic and chloroplast isoenzymes of CuZn-superoxide dismutase from tomato leaves and their relationship to other CuZn-superoxide dismutase. Biochim. Biophys. Acta. 874:99-115.
82. Lesley C. Wright. Edward J. McMurchie, M. Keith Pomeroy, and John K. Raison. 1982.Thermal behavior and lipid composition of cauliflower plasma membrane in relation to ATPase activity and chilling sensitivity. Plant Physiol. 69:1356-1360.
83. Levitt, J.1980. Responses of Plants to Environmental Stresses, Vol. 1.Chilling, Freezing and High Temperature Stresses. New York: Academic.497 pp.
84. L. Mark Lagimini, Sandra Bradford, and Steven Rothstein Peroxidase-induced wileing in transgenic Tobacco plants The plant Cell. 2:7-18.
85. Lagrimini, L.M., and Rothstein, S. (1987). Tissue specificity of tobacco peroxidase isozymes and their induction by wounding and tobacco mosaic virus infection. Plant Physiol. 84, 438-442.
86. Lagrimini, L.M., Burkhart, W., Moyer, M., and Rothstin, S. (1987). Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue specific expression. Proc. Natl. Acad. Sci. USA 84, 7542-7546.
87. Lowry, O.H., Rosebrough, N.J., Farr, A. L. and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
88. Luis A. Del Rio, M. Gomez Ortega. A. Leal Lopez, and J. Lopez Gorge. 1977. A more sensitive modification of the catalase assay with the clark oxygen electrode. Anal. Biochem. 80:409-115.
89. Lyons, J. M., Graham, D., Raison, J. K., eds. 1979 Low temperature stress in crop plants: The role of the membrane. New York: Academic. 565 pp.
90. Lyons, J. M., Raison, J. K., Steponkus, P. L. 1979 The plant membrane in response to low temperature. New York: Mcademic. Vol. 1,287pp.;Vol. 2,303 pp.
91. Mader, M., and Fussl, R. (1982). Role of peroxidase in Lignification of tobacco cells.11. Regulation by phenolic compounds. Plant Physiol. 70, 1132-1134.
92. Mark Stitt and Hans W. Heldt.1981 Phsiological rates of starch breakdown in isolated intact spinach chloroplast. Plant Physiol. 68:755-761.
93. Martin Caffrey. 1987 The combined and separate effects of low temperature and freezing on membrane lipid mesomorphic phase behavior: relevance to cryobiology. Biochim. Biophys. Acta. 896: 123-127.
94. Matilde Baron Ayala and Gerhard Sandman. 1988 Activities of Cu-containing proteins in Cu-depleted pea leaves. Physiol. Plant. 72:801-806.
95. Matthias Hahn and Virginia Walbot. 1989 Effects of cold treatment on protein synthesis and mRNA leaves in Rices Leaves. Plant Physiol. 91:930-938.
96. Mehler, A. H. 1951. Studies on reactions of illuminated chloroplast. I. Mechanisms of the reduction of oxygen and other hill reagents. Arch. Biochem. Biophys. 33:65-77.
97. Michalski, W. P., Kaniuga, Z. 1981 Photosynthetic apparatus of chilling-sensitive plants. X. Relationship between superoxide dismutase activity and photoperoxidation of chloroplast lipid. Biochim. Biophys. Acta 637:159-67.
98. Michel Perras and fathey Sarhan. 1989 Synthesis of freezing tolerance proteins in leaves, crown, and roots during cold accimilation of wheat. Plant Physiol. 89:577-585.
99. M. J. Droillard, A. Paulin. and J. C. Massot. 1987 Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations. Phsiol. Plant. 71:197-202.
100. Maiki, N. 1980.Role of superoxide dismutase in a copper - resistant strain of yeast. Plant cell Physiol. 21:775-83.
101. Makamura, S.1970 Initiation of sulfite oxidation by spinach ferredoxin-NADP redutase and ferredoxin system: a model experiment on the superoxide anion radical production by metalloflavoproteins. Biochim. Biophys. Res. Commun. 41:177-83.
102. Nakano, y., Asada, K. 1980 Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol.21:1295-1307.
103. O. Lastra, M. Gomez, J, Lopez-Gorge and L. A. del Rio. 1982 Catalase activity and isozyme pattern of the metalloenzyme system, superoxide dismutase, as a function of leaf development during growth of pea. Physiol. Plant. 55:209-213.
104. Omran, R. G. 1980 Peroxide levels and the activities of catalase, peroxidase and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant physiol. 65:407-8.
105. Oskar J. Sanchez, Alberto Pan, Gregorio Nicolas and Emillia Labrador. 1989 Relation of cell wall peroxidase activity with groth in epicotyls of Cicer arietinum. effets of calmodulin inhibitors. Physiol. Plant. 75:275-279.
106. Patterson, B. D., Murata, T., Graham D. 1976 Eletrolyte leakage induced by chilling in Passiflora species tolerant to different climates. Aust. J. Plant Physiol. 3:435-42.
107. Patterson, B. D., Pearson, J. A., Payne, L. A. 1981 Metabolic aspects of chilling resistance: alanine accumulation and glutamate depletion in relation to chilling-sensitivity in Passionfruit species. Aust. J. Plant Physiol. 8:457-64.
108. P. M. Vignais, A. Terech, C. M. Meyer and M. F. Henry. 1982 Isolation and characterization of a protein with cyanide-sensitive superoxide dismutase activity from the prokaryote, Paracoccus Denitrificons. Biochem. Biophys. Acta 701: 305-317.
109. Regina Thebud and Kurt A. Santarius. 1981. Effects of freezing on spinach leaf mitochondria and thylakoids in Situ and in Vitro. Plant physiol.68:1156-1160.
110. Renate Wendler, Robert Veith, Jane Dancer, Mark Sitt, and Ewald Komor. 1990. Sucrose storage in cell suspension culture of Saccharum sp. (sugarcane) is regulated by a cycle of synthesis and degrdation. Planta. 183:31-39.
111. Richard A. Weisiger and Irwin Fridovich. 1973. Superoxide dismutase organelle specificity. J. Biol. Chem. 248:3582-3592.
112. Rikin, A., Richmond, A. E. 1979. Factors affecting leakage from cucumber seedlings during chilling stress. Plant Sci. Lett. 14:253-68.
113. Ronald E. Cannon, Joseph A. White, and John G. Scandalios. 1987. Cloning of cDNA for maize superoxide dismutase 2(SOD-2) Proc. Natl. Acad. Sci. USA.84:179-183
114. R. R. W. Hodgins and G. Oqist. 1989. Porphyrin metabolism in chill-stressed seedlings of Scot pine. Physiol. Plant. 77:620-624.
115. R. W. Miller and F. D. H. Macdowall. 1975. The tiron free radical as a sensitive indicator of chloroplastic photoautoxidation. Biochim. Biophys. Acta. 387:176-187.
116. Salin, H. L. and Bridges, S. M. 1982. Isolation and characterization of an iron-containing superoxide dismutase from a eukaryote, Brassica Campestris. Arch. Biochen. Biophys. 201: 369-374.
117. Sawyer, D. T., Richens, D. T., Nanni, E. J., Stallings, M. D. 1980. Redox reaction chemistry of superoxide ion. In developments in biochemistry.Vol.11B.
118. Schmid, P.S., and Feucht, W. (1980) Tissue-specific oxidation browning of polyphenols by peroxidase in cherry shoots. Gartenbauwissenschart 45: 68-73.
119. Sevilla, F., Lopez-Gorge, J., Gomez, M. and del Rio, L, A. 1980. Manganese superoxide dismutase from a higher plant. Purification of a new Mn-containing enzyme. Plnta. 150:153-157.
120. Stefan Marklund and Gudrun Marklund. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogall and a convenient assay for superoxide dismutase. Eur. J. Biochem.47:469-474.
121. Sumio Kanematsu and Kozi Asada. 1989. CuZn-superoxide dismutase in rice: Occurrence of an active, monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues. Plant cell Physiol. 30:381-391.
122. Sumio Kanematsu and Kozi Asada. 1990. haracteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol. 31:99-112.
123. Tanaka, K., Sugahara, K. 1980. Role of superoxide dismutasein defence against S02 toxicity and in increase in superoxide dismutase activity with S02 fumigation. Plant Cell Physiol. 21:601-11.
124. Taylor, A. O., Jepsen, N. M., Christeller, J. T. 1972. Plants under climatic stress. III. Low temperature, hight light effect on photosynthetic produts. Plant Physiol. 49:798-802.
125. Thorpe, T.A., Van, M.T.T., and Gaspar, T. (1978). Isoperoxidases in epidermal layers of tobacco and changes during organ formation in vitro. Physiol. Plant 44, 388-394.
126. Van Ginkel, G., Brown, J. S.1978. Endogenous catalase and superoxide dismutase activities in photosynthetic membranes. FEBS Lett. 94:284-86.
127. Vonikov, V. K. 1978. After effect of chilling on function activity of the mitochondria of wheat, Agropyron and wheat-Agropyron hybrids. Fiziol. Rast.25:761-66.
128. Walter Wager, Anders Wiemken, and Philippe Matile (1986) Regulution of fructan metabolism in leaves of Barley. Plant. physiol.81:444-447.
129. Weisiger, R. A. and Fridovich, I.1973. Superoxide dismutase. organelle specificity. J. Biol. Chem. 248:3582-3592.
130. W. P. Michalski and Z. Kaniuga. 1982. Photosynthetic apparatus of chilling-sensitive plants XI. Reversibility by light of cold-and-dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplast. Biochim. Biophys. Acta. 680:250-257.
131. Yasuhisa Kono and Irwin Fridovich. (1982) Superoxide Radical inhibits catalase. J. Biol. Chem. 257:5751-5754.
132. Yoshida, S., Tagawa, F.1979. Alterration of the respiratory function in chill-sensitive callus due to low temperature stress. I. Involvement of the alternate pathway. Plant Cell Physiol. 20:1243-50.
133. Youngman, R. J., Elstner, E.F.1981.Oxygen species in paraquat toxicity: the crypto-Oh radical. FEBS Lett. 129:265-68.
134. Y. Sawada, T. Ohyama and I. Yamazaki. 1971. Preparation and physicochemical properties of green pea superoxide dismutase. Biochim. Biophys. Acta 588:305-311.
135. Zelitch, I.1972. The photooxidation of glyoxylate by envelope free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biochem. Biophys. 150:698-707.
136. Z. Kaniuga, J. Zabek, and W.P. Michulski. 1979. Photosynthetic apparatus in chilling-sensitive Plants. VI. Cold and dark-induced changes in chloroplast superoxide dismutase acctivity in relation to loosely-bound manganese content. Planta. 145:145-150.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75807-
dc.description.abstract本研究是以14天大之抗冷性豌豆(Pisum sativum L C V.)與5天大冷敏感性綠豆(Vigna radiata L.)幼苗為實驗材料,分別比較過氧化氫?(Peroxidase),催化?(Catalase),超氧物歧化?(superoxide dismutase SOD)及蔗糖合成?(sucrose synthase SS)等酵素活性之變化,藉此探討這二者植物受低溫逆境下所?生之生理生化反應。由實驗結果得知四種酵素活性的變化如下:豌豆的過氧化氫?活性在4℃和10℃處理下均比28℃之對照組低。10℃處理的平均活性比28℃處理的低約25%,而4℃處理的平均比28℃低約10%。綠豆的過氧化氫?在10℃下卻比28℃平均高約40%,而4℃處理的平均活性與28℃(對照組)相近。
豌豆的催化?活性在4℃處理下,會隨著處理的時間增長逐漸減低,而平均活性與28℃相差不大。而10℃處理的,卻會隨處理的時間增長,活性變得愈大,在96小時幾乎為28℃的一倍。綠豆的催化?,則在4℃處理下活性減低的很明顯,其平均活性為28℃的25%,而10℃處理的,則其活性下降較平緩,平均活性約為28℃的80%。
豌豆的全葉超氧物歧化?整個活性變化與28℃相近,其中Mn-SOD活性會受低溫(4℃)影響而降低,平均活性(對照組)為28℃的一半,而10℃冷馴化處理的活性稍有影響,平均約為28℃的80%。但Fe-SOD活性卻因低溫而上升,尤其是4℃,Fe-SOD的活性增加,使整個SOD的活性跟28℃處理的相差不大。CuZn-SOD在4℃處理下活性有逐漸上升跡象,但10℃卻是緩慢下滑。葉綠體抽取的超氧物歧化?活性,其中Mn-SOD不因低溫影響活性,CuZn-SOD則因低溫影響之下而增加,但不明顯。綠豆的全葉超氧物歧化?的活性變化受低溫影響不大。其中Mn-SOD因低溫(4℃)影響,活性平均只為28℃的75%而10℃處理卻有逐漸上升的趨勢。Fe-SOD和CuZn-SOD均受低溫影響而上升,但幅度不大。葉綠體抽取的SOD,其中Mn-SOD在10℃下,活性增加其增加量平均為28℃的20%,而4℃則下降,但不很大。而CuZn-SOD活性則不因低溫而改變。
在豌豆的蔗糖合成?在10℃下所受的影響不大。但在4℃處理,其活性則有明顯的增加,平均增加量為20%。然而綠豆的蔗糖合成?,在10℃下,活性雖有上升趨勢,但並不高。以4℃處理的則活性減低,平均約為28℃的3/5。
由本研究結果顯示,在低溫逆境下植物體內的超氧物歧化?及過氧化氫?活性變化不大。
zh_TW
dc.description.abstractThis study deals with the responses of both mungbean (cold-sensitive) and pea (cold-resistant) to low temperature, mainly in the chilling range of about 4℃ and cold-acclimation range of about 10℃.
This article concerns the comparasion between mungbean and pea on peroxidase, catalase, superoxide dismutase (SOD), and sucrose synthase (S.S) activities at 4℃, 10℃ and 28℃.
In pea leaves the average activity of peroxidase at 10℃ is lower than that at 28℃ about 25%, and the average activity of peroxidase at 4℃ is lower than that at 28℃ about 10%. On the other hand, mungbean leaves the average activity of peroxidase at 10℃ is higher than that at 28℃ about 40%, at 4℃ it is similar to that at 28℃.
In pea leaves the average activity of catalase at 4℃ is slightly lower than that at 28℃, but at 10℃ it increases nearly two times as large as that at 28℃ after 96 hours treatment. While mungbean is chilled at 4℃, the average activity of catalase is decreased apparantly compared with that at 28℃, but at 10℃, it slightly lower down to 80% of that at 28℃.
According to prothetic metals, three types of SOD have been found they are: CuZn-, Mn- and Fe-containing enzymes. When pea leaves are treated with chilling and cold-acclimation, total SOD activity is similar to it at 28℃. But Mn-SOD activity chilled at 4℃ decreases to half times as large as it at 28℃, and at 10℃, it decreases to 80% of it at 28℃. Meantime upon chilling effect, Fe-SOD activity increases until the totaal SOD activity is common to that at 28℃. CuZn-SOD activity is not affected by low temperature. In chloroplast SODs activities, CN-insensitive Mn-SOD is not affected by low temperature, but CN-sensitive CuZn-SOD is affected to increase.
At 4℃ and 10℃, total SOD activities in mungbean leaves change slightly. Mn-SOD activity is affected by chilling that decrease to 75% compared to that at 28℃, but it increases slightly during cold-acclimation. Fe-SOD and CuZn-SOD activities increase during low temperature. treatments. In chloroplast, the average activity of CN-insensitive Mn-SOD increase to 120% compared to that at 28℃ during cold acclimation, but only slightly decreased under 4℃ treatment. On the contrary, CN-insensitive CuZn-SOD activity is not affected by low temperature.
In pea leaves cold -acclimation does not effect S.S activity, but it progressively increase at 4℃. While in mungbean leaves chilled at 4℃ S.S activity decreases to 60% of that at 28℃, but that slightly increase during cold-acclimation.
This conclusion is that chilling stress does not effect superoxide dismutase and peroxidase activities.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:15:32Z (GMT). No. of bitstreams: 0
Previous issue date: 1991
en
dc.description.tableofcontents壹、中文摘要……………………………………………………1
貳、英文摘要……………………………………………………3
參、前言…………………………………………………………5
肆、材料與方法…………………………………………………9
伍、結果…………………………………………………………18
陸、討論…………………………………………………………22
柒、圖表…………………………………………………………26
捌、參考文獻……………………………………………………56
dc.language.isozh-TW
dc.title低溫逆境下植物體還原氧化?與蔗糖合成?活性的改變zh_TW
dc.titleThe activity assay of oxireductase and sucrose synthase of plants under chilling stress.en
dc.date.schoolyear79-2
dc.description.degree碩士
dc.relation.page66
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved