請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75805
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lih-Ling Leu | en |
dc.contributor.author | 呂麗玲 | zh_TW |
dc.date.accessioned | 2021-07-01T08:15:32Z | - |
dc.date.available | 2021-07-01T08:15:32Z | - |
dc.date.issued | 1991 | |
dc.identifier.citation | 周昌弘。1981。從植化生態學的觀點論植物對環境的適應。科學農業29(5-6): 133-141。 周昌弘。1985。植物相剋作用之研究。科學發展13-2: 147-166。 周昌弘。1984。臺灣熱帶農業生態系中之植物相剋作用。熱帶植物研討會論文集中央研究院植物研究所專列第六號29-41。 楊秋忠,宋樹群。1983。氯苯氧殺草劑於水田及旱田土壤之吸附及樹脂萃取回收之效應。中國農業化學會誌 21(3-4): 224-230。 蔡淑華。1985。植物組織切片技術綱要。臺大植物系。 Al-Naib, F. A. G. and E. L. Rice. 1971. Allelopathic effects of Platanus occidentalis. Bull. Torrey Bot. Club 98: 75-82. Ali, M. and J. S. Qadry. 1987. Amino acid composition of fruits and seeds of medicinal plants. J. Indian Chem. Soc. LXIV: 230-231. Anderson, R. C. and O. L. Locuks. 1966. Osmotic pressure influence in germination tests for antibiosis. Science 152: 771-773. Ather, M. and A. Mahmood. 1980. A qualitative study of the nodulating ability of legumes of Pakistan. List 2. Trop., Agric. (Trinidad) 57: 319-324. Bell, E. A. 1971. In Chemotaxonomy of the Leguminosae (J. B. Harborne, D. Boulter and B. L. Turner, eds, pp. 179-204. Academic Press, London and New York. Blum, U., and S. R. Shafer. 1988. Microbial population and phenolic acids in soil. Soil Biol. Biochem. 20: 793 -800. Borner, H. 1960. Liberation of organic substances from high plants and their role in the soil sickness problem. Bot. Rev. (Lancaster) 26: 393-424. Brown, R. L. and C. S. Tang, and R. K. Nishimoto. 1983. Growth inhibition from Guava root exudates. Hort. Science 18: 316-318. Cameron, H. J. and G. R. Julian. 1980. Inhibition of protein synthesis in lettuce (Latuca sativa L.) by allelopathic compounds. J. Chem. Ecol. 6: 989-995. Casinovi, C. G., P. Ceccherelli, G. Fardella, and G. Grandolini. 1983. Isolation and structure of a quassinoid from Ailanthus glandulosa. Phytochemistry 22: 2871-2873. Chou, C. H. 1976a. Interactions among organisms. Nat. Sci. Coun. Monthly 4:2526-2570. Chou, C. H. 1976b. Rice residues in the paddy soil can be toxic to rice growth. Sci. Bull. (R. O. C.) 8(9): 3-4. Chou, C. C. 1985. Allelopathic research. Nat. Sci. Counc. Month. 13(2): 147-166. Chou, C. C. 1989. Allelopathic research of subtropical vegetation in Taiwan IV. comparative phytotoxic nature of leachate from four subtropical gresses. J. Chem. Ecol. 15: 2149-2159. Chou, C. H. and H. L. Chou. 1976. Toxic amino acid in leguminous plant. Chinese Bioscience 9: 17-26. Chou, C. H. and Y. T. Chung. 1974. The allelopathic potential of Miscanthus floridulus. Bot. Bull. Academia Sinica 15: 14-27. Chou, C. H. and M. H. Hou. 1981. Allelopathic researches of subtropical vegetations in Taiwan I. Evaluation of allelopathic potential of bamboo vegetation. Proc. Nat. Sci. Coun. (R. O. C.) Part B. 5(3): 284-292. Chou, C. C. and Y. L. Kuo. 1986. Allelopathic research of subtropical vegetation in Taiwan III. Allelopathic exclusion of understory by Leucaena leucocephala (Lam) de Wit. J. Chem. Ecol. 12: 1431 -1448. Chou, C. H. and H. J. Lin. 1976. Autointoxication mechanism of Oryza sativa I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2: 353-367. Chou, C. H. and C. H. Muller. 1972. Allelopathic mechanisms of Arctostaphylos glandulosa var. zacaensis. Am. Midl. Nat. 88: 34-347. Chou, C. H. and C. C. Young. 1974. Effects of osmotic concentration and pH on plant growth. Taiwania 19: 157-162. Chou, C. H. and C. C. Young. 1975. Phytotoxic substances in twelve subtropical grasses. J. Chem. Ecol. 1: 183-193. Chou, C. H., S. J., Chang, C. M. Cheng, F. H. Hsu, Y. C. Wang, W. H. Den and C. Huang. 1989. The role of allelopathy in forest conservation and management II. Interaction between kikuyu grass and three hardwood plants. pp. 75-5. In: Proc. Symposium on Ecological Management. August 4-25, 1988. Taiwan Forestry Research Institute, Taipei, Taiwan (in Chinese). Chou, C. H., Y. C. Chiang and H. H. Chfug. 1981. Autointoxication mechanism of Oriza sativa III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Chem. Ecol. 7: 741-752. Colton, C. E., F. A. Einhellig. 1980. Allelopathic mechanisms of velvetleaf (Abutilon theophrasti Medic., Malvaceae) on soybean. Amer. J. Bot. 67: 1407-1413. del Moral, R. and C. H. Muller. 1970. Allelopathic effects of Eucalyptus camaldulensis. Amer. Midl. Natur. 83: 254-282. del Moral R. and R. G. Cates. 1971. Allelopathic potential of the dominant vegetation of western Washington. Ecology 52: 1030-1037. Einhellig, F. A. and J. A. Rasmussen. 1979. Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J. Chem. Ecol. 5: 815-824. Evenari M. 1949. Germination inhibitors. Bot. Rev. 153-194. Fisher, R. F. 1978. Juglone inhibits pine growth under certain Moisture regimes. Soil Sci. Soc. Am. J. 42:801-803. Fowden, L. 1963. Amino-acid analogues and the growth of seedlings. J. Expt. Bot. 14: 387-398. Fowden L. and M. H. Richmond. 1963. Replicement of proline by azetidine-2-caeboxylic acid during biosynthesis of protein. Biochem. Biophys. Acta. 71: 459-461. Gabriel, W. J. 1975. Allelopathic effects of black walnut on white birches. J. Forestry 73: 234-237. Ghouse, A. K. M. and Shamima Hashmi. 1977. Comparative study of cambial structure of five indian tropical trees. Phytomorphology 35-39. Gill, L. S. and S. H. Husaini. 1982. Cytology of some arborescent Leguminosae of Nigeria. Silvae Genetica 31: 117-122. Hais, I. M. and K. Macek. 1963. Paper chromatography. Publishing house of the Czechoslovek Academy of Science, Prague, 955 pp. Heisey, R. M. and C. C. Delwiche. 1983. A survey of california plants for water-extractable and volatile inhibitors. Bot. Gaz. 144(3): 382-390. Heisey, R. M. 1990. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima). J. Chem. Ecol. 16: 2039-2055. Heisey, R. M. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (Ailanthus altissima). Amer. J. Bot. 77: 662-670. Henderson, M. E. K. and V. C. Farmer. 1955. Utilization by soil fungi of p -hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. J. Gen. Microbiol. 12: 37-46. Hodges, C. S. and J.A. Tenorio. 1984. Root disease of Delonix regia and associated tree species in the Mariana Islands caused by Phellinus noxius. Plant Disease 68: 334-336. Jameson, D. A. 1970. Degradation and accumulation of inhibitory substance from Juniperus osteosperma (Torr.) Little. Plant and soil. 33: 213-224. Janzen, D. H. 1977. How southern cowpea weevil larvae (Bruchidae: Callosobruchus maculatus) die on nonhost seeds. Ecology 58: 921-927. Kaminsky R. 1981. The microbial origin of the allelopathic potential of Adenostoma fasciculatum H & A. Ecol. Monographs 51: 365-382. Kaminsky R. and W. H. Muller. 1977. The extraction of soil phytotoxins using a neutral EDTA solution. Soil Science 124: 205-210. Kil, B. S. 1981. Allelopathic effect of Pinus densiflora on the floristic composition of undergrowth in pine forests. Doctoral dissertation. Department of Biology. Chung-Ang University, Korea. Kunc, F. 1971a. Decomposition of vanillin by soil microorganisms. Folia Microbiol. 16: 41-50. Kunc, F. 1971b. Effect of glucose on decomposition of vanillin by soil microorganisms. Folia Microbial. 16: 51. Lee, K. C. and R. W. Campbell. 1969. Nature and occurrence of juglone in Juglans nigra L. Hort. Science 4: 297-298. Lodhi, M. A. K. and E. L. Rice. 1971. Allelopathic effects of Celtis laevigata. Bull. Torrey Bot. Club 98: 83-89. Lodhi, M. A. K. 1978. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community. Amer. J. Bot. 65: 340-344. Martin, J. P. and K. Haider. 1979. Biodegradation of 14C-labeled model and cornstalk lignins, puenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil. Applied and environmental microbiology 283-289. Mcpherson J. K. G. L. Thompson. 1972. Competitive and allelopathic suppression of understory by Oklahoma oak forests. Bull. Torr. Bot. Club 99: 293-300. Mergen F. 1959. A toxic principle the leaves of Ailanthus. Bot. Gaz. 32-36. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93: 332-351. Muller, C. H. 1970. Recent Advances in Phytochemistry Vol. 3. C. Steelink and V. C. Runeckles (Eds.); Appleton century-crofts, New York, NY, pp. 105-121. Muller, W. H. 1965. Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot. Gaz. 126: 195-200. Muller, W. H. and R. Hauge. 1967. Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling anatomy. Bull. Torrey Bot. Club 94: 182-191. Neave, I. A. and J. O. Dawson. 1989. Juglone reduces growth, nitrogenase activity, and root respiration of actinorhizal black alder seedling. J. Chem. Ecol. 15: 1823-1836. Patrick, Z. A. 1971. Phytotoxic substances associated with the decomposition in soil of plant resides. Soil Sci. 111: 13-18. Rice, E. L. 1974. Allelopathy. Academic Press, New York. Rice, E. L. 1979. Allelopathy-an update. Bot. Rew. 45:15-109. Rice, E. L. 1984. Allelopathy. 2nd ed. Academic Press, New York. pp422. Rovira, A. D. 1969. Plant root exudates. Bot. Rev. 35: 35-57. Schmidt, S. K. 1988. Degradation of juglone by soil bacteria. J. Chem. Ecol. 14: 1561-1571. Schmidt, S. K. and M. Alexander. 1985. Predicting threshold concentrations of organic substrates for bacterial growth. J. Theor. Biol. 114: 1-8. Sung, M. L. and L. Fowden. 1969. Azetidine-2-carboxylic acid from the legume Delonix regia. Phytochemistry 8: 2095-2096. Tack, E. F., P. J. Chapman, and S. Dagley. 1972. Metabolism of gallic acid and syringic acid by Pseudomonas putida. J. Bio. Chem. 247: 6438-6443. Takahashi, M. 1989. Mechanism of the allelopathic action of Lycoris radiata and basis of its use in weed control. Phytochemical Ecology: allelochemicals, mycotoxins and insect Pheromones and allomones (C. H. Chou; G. R. Waller, eds.), Institute of Botany, Academia Sinica Monograph Series no. 9. 293-302. Tang, C. S. and C. C. Young. 1982. Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima). Plant Physiol. 69: 155-160. Tubbs, C. H. 1973. Allelopathic relationship between yellow birch and sugar maple seedlings. Forest Sci. 19(2): 13-145. Tukey, H. B., Jr. 1969. Implications of allelopathy in agricultural plant science. Bot. Rev. (Lancaster) 35: 1-16. Turner, J. A. and E. L. Rice. 1975. Microbial decomposition of ferulic acid in soil. J. Chem. Ecol. 1(1): 41-58. Wang, T. S. C., S. Y. Cheng and H. Tung. 1967a. Extraction and analysis of soil organic acids. Soil Sci. 103: 60-366. Wang, T. S. C., S.Y. Cheng and H. Tung. 1967b. Soil phenolic acids as plant growth inhibitors. Soil Sci. 103: 239-246. Weeb, I. J., J. G. Tracy and K. P. Haydock. 1967. A factor toxic to seedling of the same species associated with living roots of the non-gregarious subtropical rain forest tree Crevilled robusta. J. Appl, Ecol. 4: 13-25. Whittaker, R. H. and P. P. Feeny. 1971. Allelochemics: Chemical interactions between species. Science 171: 757-770. Whittaker, R. H. 1970. The biochemical ecology of high plants. In: Chemical Ecology (E. Sondheimer and J. B. Simeone, eds) pp. 43-70. Academic, N. Y. d. Williamson, G. Bruce, N. H. Fischer, D. R. Richardson and Ana de la Pena. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub, Conradina canescens. J. Chem. Ecol. 15(5): 1567-1677. Yeoh, H. H., Y. C. Wee and Leslie Watson. 1984. Systematic variation in leaf amino acid compositions of leguminous plants. Phytochemistry 23: 2227-2229. Young, C. C. 1984. Autointoxication in root exudates of Aspargus officinalis L. Plant and Soil 82: 247-253. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75805 | - |
dc.description.abstract | 鳳凰木(Delonix regia (Boj) Raf.)係熱帶的豆科植物,經常在此植物下,其地被植物種類少,且生物量相當低。依田野的觀察及測定,此地被植物稀少的原因非物理因數如光、水或營養物質的競爭所致,而可能是由於鳳凰木的落葉或其代謝物質抑制地被植物的相剋作用所致。?證明此相剋作用,本研究以生物分析、色層分析、掃描式電子顯微鏡及組織切片等方法來證明鳳凰木植物相剋作用潛能。 將掉落的鳳凰木花、葉、枝條以不同百分比萃取的水溶萃取液如1%、2%、3%、4%、5%,分別對萵苣、苜蓿、白菜、油菜作生物分析以比較其植物毒性程度。其結果顯示花水溶萃取液在1%時抑制白菜根生長達81.5%,抑制油菜、萵苣根生長達77.6%及70.1%,其次是枝條及葉的水溶萃取液,而鳳凰木樹下的土壤及其根圈土或腐葉土之水溶萃取液之植物毒性不顯著,顯示植物毒性表示於花、葉、枝條等部位。一般言之,藿香薊常生長在陽光充足的棲地,偶而也在陰暗地方,但在具相當光度之鳳凰木樹下卻不常見,作者選用上述萃取液做一系列探討卻發現無明顯抑制現象,此原因有待進一步探討。對另二種陰地植物如日本柳葉箬、雷公根的毒性程度則較明顯,由此顯示陰地植物被抑制的現象與植物相剋作用有關。 ?進一步瞭解植物毒物植對植物根生長抑制之機制,作者選用白菜種子以鳳凰木水溶萃取液做生物分析處理後以掃描式電子顯微鏡觀察發現白菜種子根發育明顯受毒物質抑制,根冠細胞有嚴重剝落現象。 經HPLC之分析,本研究經鑑得鳳凰木中之植物毒物質有gallic acid, 3,4-dihydroxybenzoic acid, 3,4-dihydroxybenzaldehyde, chlorogenic acid, 4-hydroxybenzoic acid, 3,5-dinitrobenzoic acid, 3,4-dihydroxyhydrocinnamic acid等,尚有未被鑑定之類黃素及其它物質亦可能?植物相剋物質。 本研究結果證明鳳凰木抑制樹下地被植物生長與鳳凰木所產生之次階代謝物質及其中所含之植物毒物質有關。鳳凰木所產生之次階代謝物及其中所含之植物毒物質亦影響其土壤中之微生物相。 | zh_TW |
dc.description.abstract | Delonix regia (Boj.) Raf. plantation in Tainan, southern Taiwan, exhibits a unique pattern of weed exclusion beneath canopy. The pattern has been particularly pronounced in the area where a substantial amount of D. regia litter has accumulated on the ground. Field data showed that the phenomenon was due primarily not to physical competition, involving light, soil moisture and nutrients, but due to an allelopathic interaction. Aqueous extracts fallen leaves, branches, flowers of D. regia showed significantly phytotoxic effects on many test species, including lettuce (Lactuca sativa), alfalfa (Medicago sativa), pickled cabbage (Brassica chinensis) and Brassica campestris L. subsp. napus Hook. f. & Anders. var. nippo-oleifera Mak. The aqueous extracts of the flower of D. regia revealed the highest phytotoxicity. In order to further understand the inhibition of phytotoxic effect, seeds of Brassica campestris were soaked in the aqueous extracts for various time period and the seedings of B. campestris were observed by scanning electron microscopy. Injury in seedings of the tested plants were shown by deteriorated epidermis and abnormally swelling of the seedings. The allelopathic substances isolated from D. regia leaves, flowers, branches and soil were identified by paper chromatography and a high performance liquid chromatography (HPLC). They are phenolic acids, namely, gallic acid, 3,4-dihydroxybenzoic acid, 3,4-dihydroxybenzaldehyde, chlorogenic acid, 4-hydroxybenzioc acid, 3,5-dinitrobenzoic acid, 3,4-dihydroxycinnamic acid, and some unidentified flavonoids and others as well. The findings of the present study concluded that the inhibition pattern beneath the trees of D. regia is due primarily to the allelopathic substances in D. regia. The responsible allelopathic substances are mostly phenolic acids, but could be flavonoids and others as well. These metabolites could possobly be degraded by soil microorganisms, such as Candida guilliermondii and Enterobacter agglomerans, Klebsiella spp. and Rhodotorula spp. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:15:32Z (GMT). No. of bitstreams: 0 Previous issue date: 1991 | en |
dc.description.tableofcontents | 摘 要 英文摘要 目 錄 表 次 圖 次 前 言……………………………………………………1 前人研究……………………………………………………3 材料與方法……………………………………………………9 一.論文實驗步驟流程……………………………………………………9 二.材料……………………………………………………10 三.實驗方法……………………………………………………11 (一).鳳凰木中植物毒性物質之分析……………………………………………………11 1.水溶萃取液之製備 2.依不同極性溶劑萃取植物體內物質 3.製成不同次數的萃取液 4.製成不同溫度處理鳳凰木材料的水溶萃取液 (二).萃取液及淋溶液的盆栽,澆灌,水耕試驗……………………………………………………13 1.淋溶液製備 2.幼苗培養 (三).將鳳凰木材料混合於土壤中作種子盆栽試驗……………………………………………………14 (四).植物毒物質的萃取,分離與鑑定……………………………………………………14 1.植物體內的植物毒物質之萃取 2.以濾紙色層分析法進行酚酸之分離及鑑定 3.以高效能液態色層分析儀進行鑑定 (五).酚酸化合物的濾紙色層分析結果片段對種子發芽的影響…………………………………………………16 (六).萃取土壤酚酸及鳳凰木花,葉混入土壤中的酚酸類變化…………………………………………………16 1.以Amberlite XAD-4樹脂萃取土壤酚酸 2.以Na2-EDTA萃取土壤酚酸 (七).研究鳳凰木材料對土壤微生物的影響……………………………………………………17 (八).以掃描式電子顯微鏡觀察經鳳凰木萃取液處理之生物分析種子根生長之外表形態……………………18 (九).組織切片法觀察相剋物質對生物分析種子之影響……………………………………………………18 結 果……………………………………………………19 一.野外觀察及鳳凰木樹冠覆蓋面積內外之地被植物組成分析……………………………………………………19 二.鳳凰木枯枝敗葉及花之水溶萃取液之植物毒性物質比較……………………………………………………19 三.鳳凰木覆蓋土之植物毒性比較……………………………………………………25 四.鳳凰木新鮮植物材料之毒性分析……………………………………………………25 五.鳳凰木材料經不同極性溶劑萃取之毒性比較……………………………………………………32 六.鳳凰木材料經不同溫度處理後之萃取液毒性比較……………………………………………………36 七.鳳凰木花,葉萃取液及淋溶液對藿香薊幼苗生長,日本柳葉箬,雷公根生長之影響…………………………36 八.土壤混以鳳凰木材料對植物生長之影響……………………………………………………39 九.鳳凰木中之植物毒物質鑑定……………………………………………………41 十.色層生物分析……………………………………………………43 十一.收集土壤酚酸之比較……………………………………………………43 十二.植物毒物質與土壤微生物之比較……………………………………………………43 十三.植物毒物質對植物根微細構造之影響……………………………………………………49 討 論……………………………………………………63 結 論……………………………………………………69 參考文獻……………………………………………………71 | |
dc.language.iso | zh-TW | |
dc.title | 鳳凰木的植物相剋作用潛能之研究 | zh_TW |
dc.title | The Allelopathic Potential of Delonix regia (Boj.) Raf. | en |
dc.date.schoolyear | 79-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 78 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。