Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorWann-Neng Janeen
dc.contributor.author簡萬能zh_TW
dc.date.accessioned2021-07-01T08:15:07Z-
dc.date.available2021-07-01T08:15:07Z-
dc.date.issued1990
dc.identifier.citation1.許建昌 1975.台灣的禾草.台灣省教育會.
2.郭長生 1985.台灣?禾草葉部比較解剖-特別關注顆綠環特徵.國立臺灣大學植物研究所博士論文.
3.蔡淑華 1975.植物組織切片技術綱要.茂昌圖書公司.臺北.
4. Abbe, E. C., L. F. Randolph and J. Einset 1941. The developmental relationship between shoot apex and growth pattern in leaf blade in diploid maize. Amer. J. Bot. 52:153-164.
5. Bennett, D. M. 1982. An ultrastructural study on the development of silicified tissue in the leaf tip of barley (Hordeum sativum Jess). Ann. Bot. 50:229-237.
6. Bisalputra, T. W., J. S. Downton and E. B. Tregunna 1969. The distribution and ultrastructure of chloroplasts in leaves differing in photosynthetic carbon metabolism. I. wheat, Sorghum and Aristida (Gramineae). Can. J. Bot. 47:15-21.
7. Blackman, E. 1968. The pattern and sequence of opaline silica deposition in rye (Secale cereale L.). Ann. Bot. 32:207-218.
8. ---- 1971. The morphology and development of cross veins in the leaves of bread wheat (Triticum aestivum L.). Ann. Bot. 35:653-665.
9. ---- and D. W. Parry 1968. Opaline silica deposition in rye (Secale cereale L.). Ann. Bot. 32: 199-206.
10. Bobrov, R. A. 1955. The leaf structure of Poa annua with observations on its smog sensitivity in Losangeles county. Amer. J. Bot. 42:467-474.
11. Brown, W. V. 1958. Leaf anatomy in grass systematics. Bot. Gaz. 119:170-173.
12. ---- 1975. Variations in anatomy, associations and origins of Kranz tissue. Amer. J. Bot. 62: 395-402.
13. ---- 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23: 1-97.
14. ---- and S. C. Johnson 1962. The fine structure of the grass guard cell. Amer. J. Bot. 49:110-115.
15. Bugnon, P. 1924. L'Appareail conducteur chez les Gramin?es. Mem. Soc. Linn. de Normandie 26:21-40. Cited by Sharman 1945.
16. Campbell, D. H. 1881. On the development of the stomata of Tradescantia and Indian corn. Amer. Natur. 15:761-766. Cited by Kaufman, Petering and Yocum and Baic 1970.
17. Chaffey, N. J. 1982. Presence of stomata-like structures in the ligule of Agrostis gigantea Roth. Ann. Bot. 50:717-720.
18. ---- 1983. Epidermal structure in the ligule of rice (Oryza sativa L.). Ann. Bot. 52:13-21.
19. Davila, P. and Clark L. G. 1990.Scanning electron microscopy survey of leaf epidermis of Sorghastrum L. (Poaceae: Andropogoneae). Amer. J. Bot. 77:499-511.
20. Decker, H. F. 1964. An anatomic-systematic study of the classical tribe Festuceae (Gramineae). Amer. J. Bot. 51:453-463.
21. Dengler, N. G., R. E. Dengler and P. W. Hattersley 1985. Differing onotgenetic origins of PCR (Kranz) sheath in leaf blade of C4 grasses (Poaceae). Amer. J. Bot. 72:284-302.
22. ----, ---- and ---- 1986. Comparative bundle sheath and mesophyll differentation in the leaves of C4 grasses Panicum effusum and P. bulbosum. Amer. J. Bot. 73:1431-1442.
23. Douliot, H. 1891. Recherches sur la croissance terminale de la tige et de la feuille chez les Gramin?es. Ann. Sci. Nat. Bot. Ser. 13:93-102. Cited by Sharman 1945.
24. Ellis, R. P. 1987. A review of comparative leaf blade anatomy in the systematics of the Poaceae: the past twenty-five years. Soderstron et al. [eds.], Grass systematics and evolution, 3-10. Smithsonian Institution, Press, Washington, Dc.
25. Esau, K. 1943. Ontogeny of the vascular bundles in Zea mays. Hilgardia 15:327-371.Cited by Tiba, et al. 1988.
26. ---- 1965. Plant anatomy. 2nd ed. John Wiley & Sons, Inc.
27. ---- 1977. Anatomy of seed plant. 2nd ed. John Wiley & Sons, Inc.
28. Evans, L. S. and A. R. Berg 1972. Early histogenesis and semiquantitative histochemistry of leaf initiationin Triticum aestivum. Amer. J. Bot. 59:973-980.
29. Flint, L. H. and C. F. Moreland 1942. The development of vascular connections in the leaf sheath of sugarcane Amer. J. Bot. 29:360-362.
30. ---- and ---- 1946. A study of the stomata in sugarcane. Amer. J. Bot. 33:80-82.
31. Foard, D. E. 1971. The initial protrusion of a leaf primordium can form concurrent periclinal divisions. Can. J. Bot. 52:953-961.
32. Forde, D. E. 1965. Differentiation of continuity of the phloem in the leaf intercalary meristem of Lolium perenne. Amer. J. Bot. 52:953-961.
33. Frean, W. L., D. Ariovich and C. F. Cresswell 1983. C3 and C4 photosynthetic and anatomical forms of Alloteropsis semialata (R.Br.) Hitchcock. 2. A comparative investigation of leaf ultrastructure of distribution of chlorenchyma in the two forms. Ann. Bot. 51:811-821.
34. Frean, W. L. and C. F. Cresswell 1983. An ontogenetic study with special reference to development in C3 and C4 forms of Alloteropsis semialata. Proceeding of the Grassland Society of southern Africa. Cited by Tiba et al. 1988.
35. Geis, J. W. 1978. Biogenic opal in three species of Gramineae. Ann. Bot. 42:1119-1129.
36. Giles, K. L. and A. I. Shehata 1984. Some observations in the epidermis of the developing leaf of corn (Zea mays). Bot. Gaz. 145:60-65.
37. Greyson, R. I., D. B. Walden and J. A. Hume 1978. The ABPHYLL syndrome in Zes mays. II. Patterns of leaf initiation and the shape of the shoot meristem. Can. J. Bot. 56:1545-1550.
38. Haberlandt, G. 1914. Physiological plant anatomy. P.599 London: Mocmillan & Co. Cited by Sangster and Parry 1969.
39. Hattersley, P. W. 1984. Characterization of C4 type leaf anatomy in grasses (Poaceae). Mesophyll: Bundle sheath area ratios. Ann. Bot. 53: 163-179.
40. ---- and L. Watson 1975. Anatomical parameters for predicting photosynthetic pathway of grass leaves: 'the maximun lateral cell count' and 'the maximun cell distant count'. Phytomorphology 25:325-333.
41. ---- and ---- 1976. C4 grass: an anatomical criterion for distinguishing between NADP-malic enzyme species and PCK or NAD-malic enzyme species. Aust. J. Bot. 24:297-308.
42. Hitch, P. and B. C. Sharman 1968. Initiation of procambial strands in leaf primordium of Dactylis glomerata Las an example of a temperature herbage grass. Ann Bot. 52:153-164.
43. Johansen, D. A. 1940. Plant microtechnique. McGraw-Hill Book Co. Inc., New York.
44. Johnson, S. C. and W. V. Brown 1973. Grass leaf ultrastructure variations. Amer. J. Bot. 60:727-735.
45. Jones, L. P. H. and A. A. Milne 1963. Studies of silica in the oat plant. I. Chemical and physical properties of the silica. Plant and Soil 18:207-220.
46. Jones, L. P. H., A. A. Milne and S. M. Wadham 1963. Studies of silica in the oat plant. II. Distribution of silica in the plant. Plant and Soil 18:358-371.
47. Juliano, J. B. and H. J. Aldama 1937. Morphology of Oryza sativa L.. Phill. Agr. 26:1-76. Cited by Chaffey 1983.
48. Kaufman, P. B. 1959. Development of the shoot of Oryza sativa L. II. Leaf histogenesis. Phytomorphology 9:277-311.
49. ----, L. B. Petering and J. B. Smith 1970. Ultrastructural development of cork-silica cell pairs in Avena internodal epidermis. Bot. Gaz. 131:173-185.
50. ----, ---- and S. L. Soni 1970. Ultrastructural studies on cellular differentiation in internodal epidermis of Avena sativa. Phytomorphology 20:281-309.
51. ----, ----, C. S. Yocum and D. Baic 1970. Ultrastructural studies on stomatal development in internodes of Avena sativa. Amer. J. Bot. 57:33-49.
52. Laetsch, W. H. 1974. The C4 syndrome: a structural analysis. Ann. Rev. Plant Physiol. 25:27-52.
53. Lanning, F. C., B. W. Y. Ponnaiya and F. C. Crumpton 1958. The chemical nature of silica in plants. Plant Physiol. 33:339-343.
54. Linsbauer, K. 1930. Die Epidermis. Handb. PflAnat. 4:27; Cited by Esau 1965, pp154.
55. McGahan, N. N. 1955. Vascular differentiation in the vegetative shoot of Xanthium chinense. Amer. J. Bot. 42:132-142.
56. Metcalfe, C. R. 1960. Anatomy of monocotyledons. I. Gramineae. Clarendon Press, Oxford.
57. Milby, T. H. 1971. The leaf anatomy of buffalo grass, Buchloe dactyloides (Nutt.) Engelm. Bot. Gaz. 132:308-313.
58. Miroslavov, E. A. 1966. Electron microscopic studies of stomata of leaf rye Secale cereale L.. Bot. Zh. 51:446-449.Cited by Kaufman, Petering, Yocum and Baic 1970.
59. Ohsugi, R. and T. Murata 1986. Variation in the leaf anatomy among some C4 Panicum species. Ann. Bot. 58:443-445.
60. ----, ---- and N. Chonan 1982. C4 syndrome of the species in the Dichotomiflora group of the genus Panicum (Gramineae). Bot. Mag. Tokyo 595: 339-347.
61. Ollendorf, A. L., S. C. Muiholland and G. Rapp 1988. Phytolith analysis as a mean of plant identificiation: Arundo donax and Phragmites communis. Ann. Bot. 61:209-214.
62. Palmer, P. G. and A. E. Tucker 1981. A scanning electron microscopy survey of the epidermis of East African grasses, I. Smith. Contr. Bot. 49: 1-84.
63. ---- and ---- 1983. A scanning electron microscopy survey of the epidermis of East African grasses, II. Smith. Contr. Bot. 53:1-72.
64. ----, S. Gerbeth and S. Hutchison 1985. A scanning electron microscopy survey of the epidermis of East African grasses, III. Smith. Contr. Bot. 55:1-136.
65. ---- and ---- 1986. A scanning electron microscopy survey of the epidermis of East African grasses, IV. Smith. Contr. Bot. 62:1-120.
66. ---- and ---- 1988. A scanning electron microscopy survey of the epidermis of East African grasses, V, and West African supplement. Smith. Contr. Bot. 67:1-157.
67. Parry, D. W. and F. Smithson 1958a. Silicification of bulliform cell in grass. Nature 181: 1549-1550.
68. ---- and ---- 1958b. Techniques for studying opaline silica in grass leaves. Ann. Bot.22:543-549.
69. ---- and ---- 1964. Types of opaline silics depositions in the leaves of British grasses. Ann. Bot. 28:169-185.
70. Pickett-Heaps, J. D. 1967. Further observations on the Golgi apparatus and its function in cells of wheat seeding. J. Ultrastruct. Res.18:287-303.
71. Porterfield, W. M. 1937. Histogenesis in bamboo with special reference to the epidermis. Bull. Torry Bot. Club 64:421-432.
72. Prat, H. 1936. La systematique Graminees. Ann. Sci. Nat. Bot. Paris 18:165-258. Cited by Milby 1971.
73. ---- 1948. General features of the epidermis in Zea mays. Ann. Mo. Bot. Gdn.35:341-351. Cited by Sangster and Parry 1969.
74. Rosler, P. 1928. Histologische Studien am Vegetation spunkt von Triticum vulgare. Planta 5:28-69. Cited by Sharman 1945.
75. Sakai, W. S. and W. G. Sanford 1984. A developmental study of silisification in the abaxial epidermal cells of sugarcane leaf blade using scanning electron microscopy and energy dispersive X-ray analysis. Amer. J. Bot. 71:1315-1322.
76. Sangster, A. G. 1970.Intracellular silica deposition in immature leaves in three species of the Gramineae. Ann. Bot. 34:245-257.
77. ---- and D. W. Parry 1969. Some factors in relation bulliform cell silicification in the grass leaf. Ann. Bot. 33:315-323.
78. Sharman, B. C. 1942. Developmental anatomy of the shoot of Zea mays L.. Ann. Bot. 6:245-282.
79. ---- 1945. Leaf and bud initiation in the Gramineae. Bot. Gaz. 106:269-289.
80. ---- and P.A. Hitch 1967. The initiation of procambial strands in leaf primordia of bread wheat, Triticum aestivum L.. Ann. Bot. 31:229-243.
81. Shaw, R. B. and F. E. Semeins 1981. Some anatomical morphological characteristics of the north American species of Eriochloa (Poaceae: Paniceae). Bot. Gaz. 142:534-544.
82. Shields, L. M. 1951. The involution mechanism in leaf of certain xeric grasses. Phytomorphology 1:225-241.
83. Soderstron, T. R. 1967. Taxonomic study of subgenous Podosemum and section Epicampes of Muhlenbergia (Gramineae). Contr. U.S. Nat. Herb. 34:75-189. Cited by Milby 1971.
84. Soni, C. L., P. B. Kaufman and W. C. Bigelow 1970. Electron microprobe analysis of the distribution of silicon in leaf epidermal cells of the oat plant. Phytomorphology 20:350-363.
85. ----, ---- and R. A. Jones 1972. Electron microprobe analysis of the distribution of silica and other element in rice leaf epidermis. Bot. Gaz. 133:66-72.
86. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultra. Rev. 26:31-43.
87. Stebbins, G. L. and G. S. Khush 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. Amer. J. Bot. 48:51-59.
88. ---- and S. S. Shah 1960. Developmental studies of cell differentiation in the epidermis of monocotyledons. II. Cytological features of stomatal development in the Gramineae. Dev. Biol.2:477-500.
89. Tiba, S. D., C. T. Johnson and C. F. Cresswell 1988. Leaf ontogeny in Digitaria eriantha. Ann. Bot. 61:541-549.
90. Tuguo Tateoka 1958. Note on some grasses. VIII. On leaf structure of Arundinella and Garnotia. Bot. Gaz. 119:101-109.
91. ---- 1963. Note on some grasses. XIII. Relationship between Oryzeae and Ehrharteae, with special reference to leaf anatomy and histology. Bot. Gaz. 124:264-270.
92. de Wet, J. M. J. 1956. Leaf anatomy and phylogeny in the tribe Danthonieae. Amer. J. Bot. 43:175-270.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75750-
dc.description.abstract本篇探討台灣蘆竹(Arundo formosana Hack.)之葉部形態,葉片各細胞之構造,葉部之形態發生,並特別關注葉片表皮細胞之發育過程.
台灣蘆竹葉之表皮是由長型細胞,短型細胞(分為矽質細胞和木栓細胞),氣孔複合體,氣孔間細胞,泡狀細胞與毛茸(分為刺毛和微毛)等所組成.這些細胞在葉鞘和葉片排列有規則性,形成不同的細胞帶.葉舌膜狀,上緣佈滿毛茸.
長型細胞與泡狀細胞高度液胞化,胞器極少.矽質細胞啞鈴形,胞內幾乎為矽質體佔據.木栓細胞扁啞鈴形或長淺裂形,細胞內液胞化程度小,胞器較多.氣孔複合體包括一對保衛細胞,一對副細胞和開口.保衛細胞為長骨頭狀,內外側皆有細胞壁突板.細胞中央部分壁厚,而兩端壁較薄.內部胞器豐富,以粒線體最多.核亦如同其細胞形狀,葉綠體只分佈於細胞兩端.細胞兩端間具不完整細胞壁,細胞質可相互流通.副細胞紡綞狀,細胞內有大液胞,但胞器仍多.微毛含有頂端細胞與基部細胞,成熟時,頂端細胞萎縮或脫落.基部細胞液胞少,胞器多,尤其是粒線體,內質網和高爾基氏體.核為長條形.
葉肉組織含葉肉細胞,無色細胞與厚壁細胞.葉肉細胞長深裂形,內含大量葉綠體.無色細胞淺裂形或長方形,高度液胞化,僅有少許葉綠體.厚壁細胞形最小.
葉為平行脈,有脈間脈連接.除中央脈外,縱行脈可分為大型脈與小型脈,主要區別在前者有兩個大型的導管細胞和早成木質部空腔,而後者沒有.維管束組織外有兩層束鞘細胞包圍,外鞘細胞較大而壁薄,內鞘細胞小而壁厚.內,外鞘細胞皆高度液胞化.外鞘細胞有葉綠體,內鞘細胞則無.脈間脈由3-5列管胞構成,次生細胞壁螺旋狀加厚.
枝梢頂端分生組織具單一層表皮分裂層和單一層下皮層.葉之起源為表皮分裂層行平周分裂,接著下皮層行平周分裂.葉原之側面生長由邊緣和次邊緣始源細胞參與,而導致兩側邊緣重疊.
同一枚葉內之中央脈最先形成,然後依次由其兩鄰之葉脈向葉綠方向逐漸形成.中央脈起源於葉原突起位置一個具高度分生能力且少液胞的始原細胞,經行不同方向之分裂而形成原維管束組織(原始形成層),此組織隨著發育而向上下延伸.側脈發育亦如同中央脈,唯始源細胞有較多液胞.外鞘源位於圍繞原維管束組織之基本組織內,而內鞘則源於原維管束組織之最外層.脈間脈源於內鞘細胞,起源時內鞘細胞尚未厚壁化.
小型原始表層細胞之衍生物行一次不均等分裂後,較大的細胞分化成矽質細胞,較小的細胞分化成木栓細胞.長型細胞則源於大型原始表層細胞.氣孔源於大型原始表層細胞,經行一次不均等分裂後,大且質淡者為氣孔間細胞母細胞;小且質濃者為保衛細胞母細胞.保衛細胞母細胞形成後,其兩旁之原始表層細胞形成一扁豆狀突起,是為副細胞.保衛細胞母細胞則行縱向分裂而形成兩個保衛細胞.原始表層細胞之衍生物膨大且逐向外突出,細胞基部持續膨大但頂端變尖者,形成刺毛;而細胞伸長且行分裂者,則形成微毛.泡狀細胞之起源時期與脈之形成有關,先發育的脈,其旁先有泡狀細胞的生成.泡狀細胞的膨大方向受厚壁細胞形成之限制.泡狀細胞的膨大,間接造成葉的展開.
zh_TW
dc.description.abstractThe morphology, cellular structure and ontogeny of leaf, with special reference to epidermis, were examined for Arundo formosana Hack..
The leaf epidermis of Arundo formosana Hack. is composed of long cell, short cell, stomatal complex, interstomatal cell, bulliform cell and trichome. The cells in epidermis are arranged regularly and form several zones in both sheath and blade. The ligule is membranous.
Long cells and bulliform cells are the most vacuolated among all cell types in epidermis. The organelles are very few. Silica cells appear to be as a dumb-bell, and cell lumen is occupied by silica bodies. Cork cell exhibit as flat-dumb-bell, less vacuolated and with more organelles. The stomatal complex contains two guard cells, two subsidiary cells and aperture. Guard cell pocesses both outer and inner ledages. The cell wall in the central part of the guard cell is thickened, but that in the bulbous end is thinner. The organells are rich and mitochondria are the most abundant. The chloroplasts and the vacuoles are distributed in the bulbous ends only. The incomplete wall is found in the wall located between two guard cells in their bulbous ends. It results in the migration of organelles of two contiguous guard cells. The subsidiary cells are more vacuolated than the guard cells.
The mesophyll consists of mesophyllous cell, colorless cell and the sclerenchyma. The mesophyllous cell is long-deep-lobed, containing many chloroplasts. The colorless cell shows the most vacuolated containing a few chloroplasts.
Intercostal veins are formed located between two longitudial veins. In addition to medium veins, the longitudial veins can be identified as major and minor veins. The indication of the former is the presence of two large sieve tube members and one protoxylem lacuna. The vascular strand is surrounded by biseriate sheath cells. The outer sheath cells are larger and thin-walled, whereas the inner sheath cells appear to be smaller and thick-walled. Each intercostal vein consists of 3-5 files of spiral thickening tracheids.
The dermatogen and hypodermis are found in the shoot apex. The leaf primordium is formed by a series of periclinal divisions in the dermatogen together with the subsequent periclinal divisions of hypodermal cells. The lateral growth of the leaf primordium causes the lateral overlapping of leaf margins. The median vein is the first vein forming in the leaf primordium, then the differentiation of lateral veins proceeds outwards the leaf margin. The median vein is initiatd in a single initial cell at the disc of inseration. It divids in various directions to form a cluster of cells, procambium. The procambial strand extends both acropetally and basipetally from the original seat, and becomes in connection with the other vascular strand of the plant. Development of the lateral veins shows similar pattern as that in median vein, but its initial is more vacuolated. It is located above the disc of inseration. The outer leaf sheath differentiates in ground meristem, but the inner sheath in the outermost layer of the procambium. The intercostal veins initiated in inner sheath cells. At the time of initiation the inner sheath cells are still in thin-walled stage.
After several divisions the small protodermal cells divids unequally. Its larger derivative gives rise to silica cell and the smaller one to cork cell. Some large protodermal cells become large cells, and some divide unequally. Its large derivative differentiates into interstomatal cell initial and small one into guard cell mother cell. The subsidiary cells occur perigenously. Still some other protodermal cells become protruded outwards as trichomes. The direction of bulliform cell enlargement is limited by the presence of sclerenchyma beneath it. The enlargement of bulliform cell would play a role in expansion of blade.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:15:07Z (GMT). No. of bitstreams: 0
Previous issue date: 1990
en
dc.description.tableofcontents一.中文摘要……………………………………………………1
二.英文摘要……………………………………………………4
三.緒論……………………………………………………7
四.材料與方法……………………………………………………12
五.結果……………………………………………………15
(一)葉部之外部形態……………………………………………………15
(二)葉部表皮組織……………………………………………………15
A.葉舌……………………………………………………16
B.葉鞘……………………………………………………16
C.葉片……………………………………………………17
(三)葉片細胞之構造……………………………………………………18
A.表皮組織……………………………………………………19
(1)長型細胞……………………………………………………19
(2)短型細胞……………………………………………………19
(3)氣孔複合體……………………………………………………20
(4)泡狀細胞……………………………………………………21
(5)微毛……………………………………………………21
B.葉肉組織……………………………………………………22
(1)泡狀細胞……………………………………………………22
(2)無色細胞……………………………………………………22
C.葉脈……………………………………………………22
(四)葉之發生……………………………………………………24
(五)葉脈之發育……………………………………………………24
A.中央脈……………………………………………………24
B.側脈……………………………………………………25
C.脈間脈……………………………………………………26
(六)葉片表皮之發育……………………………………………………26
A.長型細胞和短型細胞之發育……………………………………………………26
B.氣孔和氣孔間細胞之發育……………………………………………………27
C.毛茸之發育……………………………………………………28
D.泡狀細胞之發育……………………………………………………28
六.討論…………………………………………………………………………………………………………76
七.引用文獻…………………………………………………………………………………………………………85
dc.language.isozh-TW
dc.title台灣蘆竹葉部之形態及表皮組織之發育zh_TW
dc.titleLeaf Morphology and Epidermal Development in Arundo formosana Hack.en
dc.date.schoolyear78-2
dc.description.degree碩士
dc.relation.page97
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved