請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75747完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 謝明勳 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:15:06Z | - |
| dc.date.available | 2021-07-01T08:15:06Z | - |
| dc.date.issued | 1990 | |
| dc.identifier.citation | 1. Ananthan, J., Goldberg, A.L., Voellmy, R. 1986. Abnormal proteins serve as eukaryotic stress signal and trigger the activation of heat shock genes. Science 232:522-524 2. Arrigo, A.P., Welch, W.J. 1987. Characterization and purification of the small 28KD mammalian heat shock protein. J. Biol. Chem. 262:1559-1569 3. Arrigo, A.P., Suhan, J.P., Welch, W.J. 1988. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol. Cell. Biol. 8:5059-5071 4. Ayme, A., Tissieres, A. 1985. Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J. 4:2949-2954 5. Bardwell, J.C.A., Craig, E.A. 1984. Major heat shock gene of Drosophila and the Escherichia coli heat inducible dnaK gene are homologus. Proc. Natl. Acad. Sci. USA 81:848-852 6. Bardwell, J.C.A., Craig, E.A. 1987. Eucaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 5177-5181 7. Baulieu, E.E. 1987. Steriod hormone antagonists at the receptor level: a role for the heat shock protein MW 90,000 (hsp 90). J. Cell Biol. 35:161-174 8. Belanger, F.C., Brodl, M.R., Ho, T-H.D. 1986. Heat shock causes destabilization of specific mRNAs and destruction of endoplasmic reticulum in barley aleurone cells. Proc. Natl. Acad. Sci. USA 83:1354-1358 9. Bienz, M. 1984. Developmental control of the heat shock response in Xenopus. Proc. Natl. Acad. Sci. USA 81:3138-3142 10. Blackman, R.K., Meselson, M. 1986. Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J. Mol. Biol. 188:499-515 11. Bond, U., Schlesinger, M.J. 1985. Ubiquitin is a heat shock protein in chicken fibroblasts. Mol. Cell. Biol. 5:949-956 12. Brugge, J.S., Yuonemoto, W., Darrow, D. 1983. Interaction between the Rous sacroma virus transforming protein and two cellular phosphoproteins: analysis of the turnover and distribution of this complex. Mol. Cell. Biol. 4:2697-2704 13. Burke, J.J., Hatfield, J.L., Klein, R.R., Mullet, J.E. 1985. Accumulation of heat shock proteins in field-grown cotton. Plant Physiol. 78:394-398 14. Chappell, J., Hahlbrock, K. 1984. Transcription of plant defense genes in response to UV-light or fungal elicitor. Nature 311:76-78 15. Chappell, T.G., Welch, W.J., Schlossman, D.M., Palter, K.B., Schlesinger, M.J., Rothman, J.E. 1986. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45:3-13 16. Chou, M., Chen, Y.M., Lin, C.Y. 1989. Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 89:617-21 17. Cheney, C.M., Shearn, A. 1983. Developmental regulation of Drosophila disc proteins: synthesis of a heat shock protein under non-heat shock conditions. Dev. Biol. 95: 325-330 18. Chirico, W.J., Waters, M.G., Blobel, G. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805-810 19. Collier, N.C., Heuser, J., Levy, M.A., Schlesinger, M.J. 1988. Ultrastructure and biochemical analysis of the stress granule in chicken embryo fibroblasts. J. Cell. Biol. 106:1131-1139 20. Cooper, P., Ho, T-H.D. 1983. Heat shock proteins in maize. Plant Physiol. 71:215-222 21. Cooper, P., Ho, T-H.D. 1987. Intracellular localization of heat shock proteins in maize. Plant Physiol. 84:1197-1203 22. Cooper, P., Ho, T-H.D., Hauptman, R.M. 1984. Tissue specificity of the heat shock response in maize. Plant Physiol. 75:431-441 23. Courtneidge, S.A., Bishop, J.M. 1982. Transit of pp60 to the plasma membrane. Proc. Natl. Acad. Sci. USA 79:7117-7121 24. Craig, E.A., Kramer, J., Kosic-Smithers, J. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84:4156-4160 25. Czarnecka, E., Edelman, L., Schoffl, F., Key, J.L. 1984. Comparative analysis of physical stress response in soybean seedlings using cloned heat shock cDNAs. Plant Mol. Biol. 3:45-58 26. Czarnecka, E., Gurley, W.B., Nagao, R.T., Mosquera, L., Key, J.L. 1985. DNA sequence and transcript mapping of a soybean gene encoding a small heat shock protein. Proc. Natl. Acad. Sci. USA 82:3726-3730 27. Czarnecka, E., Nagao, R.T., Key, J.L., Gurley, W.B. 1987. Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean; heavy metal induced inhibition of intron processing. Mol. Cell. Biol. 8:1113-1122 28. Darvill, A.G., Albersheim, P. 1984. Phytoalexins and their elicitors- a defense against microbial infection in plants. Ann. Rev. Plant Physiol. 35:243-275 29. Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., Schekman, R. 1988. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800-805 30. Dragon, E.A., Sias, S.R., Kato, E.A., Gabe, J.D. 1987. The genome of Trypanosoma cruzi contains a constitutively expressed, tandemly arranged multicopy gene homologus to a major heat shock protein. Mol. Cell. Biol. 7:1271-1275 31. Edelman, L., Czarnecka, E., Key, J.L. 1988. Induction and accumulation of heat shock-specific poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol. 86:1048-1056 32. Ellis, J. 1987. Proteins as molecular chaperones. Nature 328:378-379 33. Farrelly, F.W., Finkelstein, D.B. 1984. Complete sequence of the heat shock-inducible HSP90 gene of Saccharomyces cerevisiae. J. Biol. Chem. 259:5745-5751 34. Finley, D., Crechanover, A., Varshavsky, A. 1984. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37:43-55 35. Freeling, M., Bennett, D.C. 1985. Maize Adhl. Ann. Rev. Genet. 19:297-324 36. Goldstein, A.H., Mayfield, S.P., Tibbot, B.K. 1989. Phosphate starvation inducible metabolism in Lycopersicon esculentum. Plant Physiol. 91:175-182 37. Groyer, A., Schweizer-Groyer, G., Cadepond, F., Mariller, M., Baulieu, E.E. 1987. Antiglucocorticosteroid effects suggest why steroid hormone is required for receptors to bind DNA in vivo but not in vitro. Nature 328:624-626 38. Gurley, W.B., Czarnecka, E., Nagao, R.T., Key, J.L. 1986. Upstream sequences required for efficient expression of a soybean heat shock gene. Mol. Cell. Biol. 6:559-565 39. Guy, C.L. 1989. Sequence information and preparation of antibodies by two-dimensional gel electrophoresis: no longer just spots on gels. Physiol. Plant. 76:615-620 40. Heikkila, J.J., Papp, J.E.T., Schultz, G.A., Bewley, J.D. 1984. Induction of heat shock protein messenger RNA in maize mesocotyls by water stress, abscisic acid, and wounding. Plant Physiol. 76:270-274 41. Heikkila, J.J., Miller, J.G.O., Schultz, G.A., Kloc, M., Browder, L.W. 1985. Heat shock gene expression during early animal development. In Changes in Eukaryotic Gene Expression in Response to Environmental Stress. (Atkinson, B.G. and Walden, D.B. eds), pp.135-156. Academic Press, Inc. New York. 42. Hemmingsen, S.M., Woolford, C., van der Vies, S.M., Tilly, K., Dennis, D.T. 1988. Homologus plant and bacteria proteins chaperone oligeromeric protein assembly. Nature 333: 330-334 43. Henderson, L.E., Oroszlan, S., Konigsberg, W. 1979. A micromethod for complete removal of dodecyl sulfate from proteins by ion-pairs extraction. Anal. Biochem. 93:153-157 44. Hensold, J.O., Housman, D.E. 1988. Decreased expression of the stress protein HSP70 is an early event in murine erythroleukemic cell differentiation. Mol. Cell. Biol. 8:2219-2223 45. Holloway, P.J., Arundel, P.H. 1988. High-resolution two-dimentional electrophoresis of plant proteins. Anal. Biochem. 172:8-15 46. Ingolia, T.D., Craig, E.A. 1982. Drosophila gene related to the major heat shock-induced gene is transcribed at normal temperatures and not induced by heat shock. Proc. Natl. Acad. Sci. USA 79:525-529 47. Ireland, R.C., Berger, E.M. 1982. Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc. Natl. Acad. Sci. USA 79:855-859 48. Jackson, M.B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Ann. Rev. Plant Physiol. 36:145-174 49. Jackson, P.J., Roth, E.J., McClure, P.R., Naranjo, C.M. 1984. Selection, isolation, and characterization of cadmium-resistant Datura innoxia suspension cultures. Plant Physiol. 75:914-918 50. Jakobsen, B.T., Pelham, H.R.B. 1988. Constitutive 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc. Natl. Acad. Sci. USA 81:1102-1106 60. Kurtz, S., Lindquist, S.L. 1984. The changing pattern of gene expression in sporulating yeast. Proc. Natl. Acad. Sci. USA 81:7323-7327 61. Kurtz, S., Rossi, J., Petko, L., Lindquist, S. 1986. An ancient development induction: heat-shock proteins induced in sporulation and oogenesis. Science 231:1154-1157 62. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 63. Lai, B.T., Chin, N.W., Stanek, A.E., Keh, W., Lanks, K.W. 1984. Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol. Cell. Biol. 4:2802-2810 64. LaRosa, P.C., Singh, N.K., Hasegawa, P.M., Bressan, R.A. 1989. Stable NaCl tolerance of tobacco cells is associated with enhanced accumulation of osmotin. Plant Physiol. 91:855-861 65. Lewis, M.J., Pelham, H.R.B. 1985. Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J. 4:3137-3143 66. Lee, A.M., Welch, J.W. 1988. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J. Cell Biol. 106:1105-1116 67. Lin, C.Y., Roberts, J.K., Key, J.L. 1984. Acquisition of thermotolerance in soybean seedlings. Plant Physiol. 74:152-160 68. Lindquist, S. 1986. The heat-shock response. Ann. Rev. Biochem. 55:1151-1191 69. Lindquist, S., Craig, E.A. 1988. The heat-shock proteins Ann. Rev. Genet. 22:631-677 70. Loomis, W.F., Wheeler, S., Schmidt, S. 1982. Phosphorylation of the major heat shock protein of Dictyostelium discoideum. Mol. Cell. Biol. 2:484-489 71. Mohdala, S.S., Poole, R.J., Dhindsa, R.S. 1988. Detection of two membrane polypeptides induced by abscisic acid and cold acclimation: possible role in freezing tolerance. Plant Cell Physiol. 29:727-730 72. Mansfield, M.A., Key, J.L. 1987. Synthesis of the low molecular heat shock proteins in plant. Plant Physiol. 84:1007-1017 73. Mansfield, M.A., Key, J.L. 1988. Cytoplasmic distribution of heat shock proteins in soybean. Plant Physiol. 86:1240-1246 74. Mascarenas, J.P., Altschuler, M. 1985. Response to environmental heat stress in the plant embryo. In Changes in Eucaryotic Gene Expression in Response to Environmental Stress. (Atkinson, B.G. and Walden, D.B. eds.) pp. 315-325. Academic Press, Inc. New York 75. Mazzarella, R.A., Green, M. 1987. ERp99, an abundant, conserved glycoprotein of the endoplasmic reticulum, is homologus to the 90-kDa heat shock protein (hsp90) and the 94-kDa glucose regulated protein (GRP94). J. Biol. Chem. 262:8875-8883 76. McAlister, L., Finkelstein, D.B. 1980. Heat shock proteins and thermal resistance in yeast. Biochem. Biophys. Res. Commun. 93:819-824 77. McMahon, A.P., Novak, T.J., Britten, R.J., Davidson, E.H. 1984. Inducible expression of a cloned heat shock fusion gene in sea urchin embryos. Proc. Natl. Acad. Sci. USA 81:7490-7494 78. McMullin, T.W., Hallberg, R.L. 1987. A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophila. Mol. Cell. Biol. 7:4414-4423 79. McMullin, T.W., Hallberg, R.L. 1988. A highly evolutionary conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell. Biol. 8:371-380 80. Meyer, Y., Chartier, Y. 1983. Long-lived and short-lived heat-shock proteins in tobacco mesophyll protoplast. Plant Physiol. 72:26-32 81. Nagao, R.T., Czarnecka, E., Gurley, W.B., Schoffl, F., Key, J.L. 1985. Genes for low-molecular-weight heat shock proteins of soybean: Sequence analysis of a multigene family. Mol. Cell. Biol. 5:3417-3428 82. Necchi, A., Pogna, NE., Mapelli, S. 1987. Early and late heat shock proteins in wheats and other cereal species. Plant Physiol. 84:1378-1384 83. Neuman, D., Nieden, U., Manteuffel, R., Walter, G., Scharf, K.D., Nover, L. 1987. Intracellular localization of heat-shock proteins in tomato cell cultures. Eur. J. Cell Biol. 43: 71-81 84. O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 10: 4007-4021 85. Pauli, D., Tonka, C.H., Ayme-Southgate, A. 1988. An unusual split Drosophila heat shock gene expressed during embryogenesis, pupation and in testis. J. Mol. Biol. 200:47-53 86. Pelham, H.R.B. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959-961 87. Petko, L., Lindquist, S. 1986. Hsp26 is not required for growth at high temperature, nor for thermotolerance, spore development, or germination. Cell 45:885-894 88. Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DEP in Drosophila. Experientia 18:571-573 89. Rosenbaum, L.C., Nilaver, G., Hagman, H.M., Neuwelt, E.A. 1989. Detection of low-molecular-weight polypeptides on nitrocellulose with monoclonal antibodies. Anal. Biochem. 183:250-257 90. Sach, M.M., Ho, T-H.D. 1986. Alteration of gene expression during environmental stress in plant. Ann. Rev. Plant Physiol. 37:363-376 91. Sanchez, E.R., Meshinchi, S., Tienrunbroj, W., Schlesinger, M.J., Toft, D.O., Pratt, W.B. 1987. Relationship of the 90-kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor. J. Biol. Chem. 262:6986-6991 92. Schlossman, D.M., Schmid, S.L., Braell, W.A., Rothman, J.E. 1984. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99:723-733 93. Schuldt, C., Kloetzel, B.M. 1985. Analysis of cytoplasmic 19S ring-type particles in Drosophila which contain hsp23 at normal growth temperature. Dev. Biol. 11:65-74 94. Shimogawara, K., Muto, S. 1989. Heat shock induced change in protein ubiquitination in Chlamydomonas. Plant Cell Physiol. 30:9-16 95. Sorger, P.K., Lewis, M.J., Pelham, H.R.B. 1987. Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81-84 96. Sorger, P., Pelham, H.R.B. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855-864 97. Sticher, L., Biswas, A.K., Bush, D.S., Russell, L.J. 1990. Heat shock inhibits α-amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes. Plant Physiol. 92:506-513 98. Subjeck, J.R., Shyy, T., Shen, J., Johnson, R.J. 1983. Association between the mammalian 110,000-dalton heat-shock protein and nucleoli. J. Cell Biol. 97:1389-1395 99. Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350-4354 100. Vierling, E., Nagao, R.T., DeRocher, A.E., Harris, L.M. 1988. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock protein. EMBO J. 7:575-581 101. Welch, W.J., Feramisco, J.R. 1984. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat shocked mammalian cells. J. Biol. Chem. 259:4501 -4513 102. Welch, W.J., Feramisco, J.R. 1985. Rapid purification of mammalian 70,000-dalton stress proteins: affinity of the proteins for nucleotides. Mol. Cell. Biol. 5:1229- 1237 103. Welch, W.J., Lee, A.M. 1988. Characterization of the thermotolerant cell. II. Effects on intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes. J. Cell Biol. 106:1117-1130 104. Welch, W.J., Suhan, J.P. 1986. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol. 103:2035-2052 105. Wiederrecht, G., Seto, D., Parker, C.S. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841-853 106. Zimmerman, J.L., Petri, W.L., Meselson, M. 1983. Accumulation of specific subsets of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32: 1161-1170 107. Zylicz, M., LeBowitz, J.H., McMacken, R., Georgopoulos, C.P. 1983. The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential to an in vitro DNA replication system. Proc. Natl. Acad. Sci. USA 80:6431-6435 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75747 | - |
| dc.description.abstract | 本實驗利用雙向電泳分析來純化大豆的15-18 KD熱休克蛋白質(heat shock proteins, HSPs)。並且以15-18KD HSPs其中的一種蛋白質(HSP1, pI6.2 MW17.3KD)做?抗原,製備得對15-18KD這一?的HSPs具有專一性的抗體。籍由免疫轉印分析(Immunoblot)的技術配合Densitometer,以純化得到已知量的HSPs做?標準(standard)來定量各種情形所誘導產生的15-18KD HSPs,探討這?蛋白質累積的量與所提供的耐熱性之間的關係。 此外,利用抗體與抗原之間的專一性,證實了這?植物所特有的HSPs在不同的植物之間可以產生交叉反應(crossreaction)。而大豆本身的15-18KD HSPs由氨基酸組成分析及免疫轉印分析都可以證實他們彼此之間有著極高度的相似性。而且整?蛋白質的行?,以及對各種誘導因數所產生的反應都具有一致性,一被誘導合成則每一種蛋白質都同時產生,一起合成,一起增加,顯示這?蛋白質可能是同一multigene family的產物。 本實驗同時發現大豆種子在吸水發芽16?20小時之後,在受到熱休克誘導下才會有大量的15-18KD HSPs的合成。在正常溫度下已有少量的低分子量HSPs存在大豆種子胚(embryo)中,而隨著種子的發芽成長,這?蛋白質亦逐漸地消失。大豆白化幼苗的低分子量HSPs除了與植物耐熱性的形成有直接的關係之外,可能還有一些其他的生理功能值得進一步深入探討。 | zh_TW |
| dc.description.abstract | Heat shock proteins (HSPs) from soybean seedlings were found enriched in 65-100% ammonium sulfate fraction. This HSPs enriched fraction was used for obtaining one of the low-molecular-weight (LMW) HSPs, p16.2 with MW 17.3 KD by 2-D PAGE. This protein spot was used as an antigen for raising a polyclonal antibody by injecting into New Zealand white rabbit. We found this antibody crossreacted with 13 polypeptides of 15-18 KD LMW soybean specific HSPs and also to some of the LMW HSPs from mung bean, rice, pea, maize and tobacco by immunoblot analyses. When the growth temperature of two-day-old soybean seedlings was shifted to 40℃ for 4h, the level of 15-18 KD HSPs accumulated to the highest level. All 13 polypeptides of HSPs in the range of 15-18KD were enhanced simultaneously. A brief 10-minute exposure to 45℃ followed by incubation at 28℃ also resulted in the synthesis of 15-18KD HSPs. Arsenite treatment also induced the synthesis of 15-18KD HSPs which were indistinguishable from the heat shock treatment but accumulated to much lower level. We estimated that the accumulation of 15-18KD HSPs to 0.6-0.76 ug/100 ug total protein was nessary for the seedling to acquire thermo-tolerance. During 6h to 12h of post-imbibition, a detectable amount of LMW HSPs was found regardless of heat shock temperature. But the levels of these LMW HSPs were much lower and were found even under non-heat shock condition (28℃). After 16-20h of germination, soybean seedlings exhibited a normal response with the synthesis and accumulation of large quantity of LMW HSPs. At the optimum temperature 42.5℃ rather than 40℃ in 1-day-old soybean seedlings synthesized the highest amount of 15-18KD HSPs. This was different from 2-day-old or 3-day-old seedlings which synthesized 15-18 KD HSPs to the highest level at 40℃. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:15:06Z (GMT). No. of bitstreams: 0 Previous issue date: 1990 | en |
| dc.description.tableofcontents | 一、前 言 (一) 環境壓迫對植物基因表現的影響……………………………………………………1 (二) 高溫逆境與熱休克蛋白質……………………………………………………2 (1) HSP110……………………………………………………3 (2) HSP83-90 family……………………………………………………4 (3) HSP70 family……………………………………………………4 (4) 低分子量之HSPs……………………………………………………5 (5) 其他的HSPs……………………………………………………6 (三) 植物的熱休克蛋白質 (1) 植物的高分子量HSPs……………………………………………………7 (2) 植物的低分子量HSPs 1.26-28KD family……………………………………………………8 2.21-24KD family……………………………………………………9 3.15-18KD family……………………………………………………9 二、材料與方法……………………………………………………11 三、結 果 (一) 大豆低分子量熱休克蛋白質的純化及其抗體之製備……………………………………………………24 (二) 大豆白化幼苗15-18KD HSPs之累積與其耐熱性之獲得……………………………………………………26 (三) 不同生長時期的大豆白化幼苗對熱休克之反應……………………………………………………28 四、討 論 (一) 大豆低分子量熱休克蛋白質HSP1抗體之特性 (1) 抗原之選擇與抗體之製備……………………………………………………67 (2) 大豆的15-18KD HSPs是同一組multigene family的產物………………………………………………68 (3) 不同植物的低分子量HSPs具有高度的同源性……………………………………………………69 (二) 大豆白化幼苗15-18KD HSPs之累積與其耐熱性形成之關係 (1) 不同的熱休克溫度與不同的熱休克時間誘導產生的15-18KD HSPs………………………………………71 (2) 大豆15-18KD HSPs之定量……………………………………………………72 (3) 大豆白化幼苗耐熱性之形成……………………………………………………73 (三) 不同時期的大豆白化幼苗對熱休克的反應 (1) 胚發育時期及種子萌芽時期對熱休克的反應……………………………………………………77 (2) 大豆種子吸水後(post-imbibition)對熱休克的反應……………………………………………………78 (3) 大豆15-18KD HSPs的組成與變化……………………………………………………81 (四) 植物熱休克蛋白質的生理功能 (1) 耐熱性(thermotolerance)……………………………………………………83 (2) 其他的生理功能……………………………………………………84 五、參考文獻……………………………………………………86 | |
| dc.language.iso | zh-TW | |
| dc.title | 大豆低分子量熱休克蛋白質抗體之製備及其定量 | zh_TW |
| dc.title | Ⅰ.Preparation and characterization of soybean LMW HSPs specific antibody Ⅱ.Quantitative estimation of soybean LMW HSPs by polyclonal antibody. | en |
| dc.date.schoolyear | 78-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 95 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
