請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 張孟瑤 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:14:48Z | - |
| dc.date.available | 2021-07-01T08:14:48Z | - |
| dc.date.issued | 1989 | |
| dc.identifier.citation | 1.南國玲,1987,熱休克對葉綠體光反應、蛋白質合成和外部的影響。國立臺灣大學理學院植物科學研究所碩士論文。
2.馬淑芳,1988,低溫逆境對耐寒和不耐寒植物之外部形態、內部微細構造和蛋白質合成的比較。國立臺灣大學理學院植物科學研究所碩士論文。 3.陳右人,1988,根溫對檬果開花之影響。國立臺灣大學農學院園藝學研究所博士論文。 4. Adiva, S.I. and Y. Waisel (1975) Cold hardiness of plants: Correlation with changes in electrophoretic mobility, composition of amino acids and average hydrophobicity of fraction-1-protein. Physiol. Plant. 34:90-96. 5. Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Bata vulgarisup. Plant Physiol. 24:1-15 6. Barlow, E.W.R., Boersma, L. and T.L. Young (1977) Photosynthesis, transpiration and leaf elongation in corn seedling at suboptimal soil temperature. Agron. J. 69:95-120 7. Bixby, J.A., Brown, G.N. (1975) Ribosomal changes during induction of cold hardiness in black locust seedings. Plant Physiol. 56:617-21 8. Carey, R.W., Berry, J.A. (1978) Effects of low temperature on respiration and uptake of rubidium ions by excised barley and corn roots. Plant Physiol. 61:858-60 9. Christiansen, M.N., H.R. Carns and D.J. Slyter (1970) Stimulation of solute loss from radicles of Gossypiumu hirsutum L. by chilling, anaerobiosis, and low pH. Plant Physiol. 46:53-56 10. Cooper, A.J., (1975) Root temperature and plant growth. C.A.B. Research Review No.4 pp73 11. Cooper, P. and D.R. Ort (1988) Changes in protein synthesis induced in tomato by chilling. Plant Physiol 88:454-461 12. Cox W. & J. Levitt (1969) Direct relation between growth and frost hardening in cabbage leaves. Plant Physiol. 44:923-928 13. Dubois, M., K.A. Hamilton, P.A. Rebers and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356 14. Eaks, I.L., Morris, L.L. (1957) Proc. Am. Soc. Hort. Sci 69:388-99 15. Eaks, I.L. (1980) Effects of chilling on respiration and volatiles of California lemon fruit. J. Am. Soc. Hortic Sci. 105:865-69 16. Epstein, E. (1961) Essential role of calcium in selective cation transport by plant cells. Plant Physiol. 36:437-444 17. Etani, S. and S. Yoshida (1987) Reversible and irreversible reduction of ACC-dependent ethylene formation in mung bean (Vigna radiata [L] Wilczek) hypocotyls caused by chilling. Plant & Cell Physiol. 28(1):83-91 18. Ferguson, I.B., M.S. Reid and R.J. Romani (1985) Effects of low temperature and respiratory inhibitors on calcium flux in plant mitochondria. Plant Physiol. 77:877-880 19. Fish, L.E., A.T. Jagendorf (1982) High rates of protein synthesis by isolated chloroplasts. Plant Physiol. 70:1107-1114 20. Ford, B.J., Whitchead, H.C.M, Rowley, J.A. (1975) Effects of light intensity and temperature on photosynthetic rate leaf starch content and ultrastructure of paspalum. Aust. J. Plant Physiol. 2:185-95 21. Fuchigami, L.H., Weiser, C.J. and D.G. Richardson (1973) The influence of sugars on growth and cold acclimation of excised stems of red-osier dogwood. J. Am. Soc. Hortic Sci. 98:444-447 22. Gilmour, S.J., R.K. Hajela and M.F. Thomashow (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol. 87:745-750 23. Graham, D. and B.D. Patterson (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Ann. Rev. Plant Physiol. 33:347-72 24. Gusta, L.V., Weiser, C.J. (1972) Nucleic acid and protein changes in relation to cold acclimation and freezing injury of Korean boxwood leaves. Plant Physiol. 49:91-96 25. Guy, C.L., K.J. Niemi and R. Brambl (1985) Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA 82:3673-3671 26. Hughes, M.A. and R.S. Pearce (1988) Low temperature treatment of barley plants causes altered gene expression in shoot meristems. Journal of experimental Botany. 39(207):1461-1467 27. Hurewi, J., Maletta, M. and H.W. Janes (1984) The effects of root-zone heating at normal of tomatoes. Acta Hort. 148:871-876 28. Janes, H.W., R.J. McAvoy., M. Maletta., J. Simpkins and D.R. Mears (1981) THe effects of warm root zone temperature on growth of tomato and poinsettia. Acta Hort. 115:245-251 29. Kawata, T. and S. Yoshida (1988) Alterations in protein synthesis in vivo in chilling sensitive mung bean hypocotyls caused by chilling stress. Plant Cell Physiol. 29(8):1423-1427 30. King, A.I., D.C. Jayce and M.S. Reid (1988) Role of carbohydrates in diurnal chilling sensitivity of tomato seedings. Plant Physiol. 86:764-768 31. Kramer, P.J. (1940) Root resistance as a cause of decreased water absorption by plants at low temperatures. Plant Physiol. 15:63-79 32. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 33. Lardy, H.A. (1952) The influence of inorganic ions on phosphorylation reactions. In: Phosphorus Metabolism. 1:477-499. Johns Hopkins Press, Baltimore 34. Leopold, A.C. and M.E. Musgrave (1979) Respiration changes with chilling injury of soybeans. Plant Physiol. 64:702-705 35. Leshem, Y.Y., Sridhara, S. and Thompson, J.E. (1984) Involvement of calcium and calmodulin in membrane deterioration during senescence of pea foliage. Plant Physiol. 75:329-335 36. Levitt, J. (1939) The relation of cabbage hardiness to bound water, unfrozen water, and cell contraction when frozen. Plant Physiol. 14:93-112 37. Levitt, J. (1957) The role of cell sap concentraction in frost hardiness. Plant Physiol. 32:237-239 38. Levitt, J. (1980) Response of plants to environmental stress. Vol.1. Chilling, freezing and high temperature stress. Academic Press, New York. 49799 39. Lieberman, M., C.C. Craft, W.V. Audia and M.S. Wilcox (1958) Plant physiol. 33:307-311 40. Lieberman, M. and S.Y. Wang (1982) Influence of calcium ang magnesium on ethylene production by apple tissue slices. Plant Physiol. 69:1150-1155 41. Lin, C.Y., J.K. Robert and J.L. Key (1984) Acquisition of thermotolerance in soybean seedings: Synthesis and accumulation of heat shock proteins and their cellular localization. Plant Physiol. 74:152-160 42. Li, P.H., C.J. Weiser and R. Van Huystee (1966) The relation of cold resistance to the status of phosphorus and certain metabolites in red-osier dogwood (Cornus stolonifera Michx.) Plant & Cell Physiol. 7:475-484 43. Li, P.H., Sakai, A. (1978) Plant cold hardiness and freezing stress. Mechanisms and crop implications. New York: Academic. P.139-152 44. Lowry, O.H., N.J. Posebrough, A.L. Farr, R.J. Randall (1961) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 192:265-275 45. Lyons, J.M. (1973) Chilling injury in plants. Ann. Rev. Plant Physiol. 24:445-67 46. Lyons, J.M., Graham, O., Raison, J.K. (1979) Low temperature stress in crop plants: The role of the membrane. New York :Academic P.81-96 47. MacRpbbie, E.A.C. (1981) Effects of ABA in 'isolated' guard cells of Commelina communis L. J. of exp. Bot. 32:563-572 48. Mans, R.J., G.O. Novelli (1961) Measurement of the incorporation of radioactive amino acids into proteins by a filter-paper disk method. Arch. Biochem. Biophys. 94:48-53 49. Markhart, A.H. III. (1986) Chilling injury: A review of possible causes. HortScince. 21(6):1329-1333 50. Mattoo, A.K., Adams, D.O., Patterson, G. and M. Lieberman (1982/83) Inhibition of 1-aminocyclopropane-1-1-carboxylic acid synthesis by phenothiazines. Plant Sci. Letters 28:173-179 51. Miller, E.V. (1946) Physiology of citrus fruits in storage. Bot. Rev. 12:393-423 52. Minorsky, P.V. (1985) An heuristic hypothesis of chilling injury in plants: A role for calcium as the primary physiological transducer of injury. Plant Cell and Environment 8:75-94 53. Mohapatra, S.S., R.J. Poole and R.S. Dhindsa (1987) Changes in protein patterns and translatable messanger RNA populations during cold acclimation of Alfalfa. Plant Physiol. 84:1172-1176 54. Moore, S. and W.H. Stein (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211:907-913 55. Nielsen, K.F. (1973) Root and root temperature. In Carso, E.W. The plant root and its environment. P.293-333 56. Oakenfull, D.G., Fenwick, D.E. (1977) Thermodynamics and mechanism of hydrophobic interaction. Aust. J. Chem. 30:741-520 57. O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021 58. Pearson, L.K., Raper, H.S. (1927) The influence of temperature on the nature of the fat formed by living organisms. Biochem. J. 21:875-879 59. Polvin, C. (1985) Effects of leaf detachment on chlorophyll fluorescence during chilling experiments. Plant Physiol. 78:833-866 60. Raison, J.K. and E.A. Chapman (1976) Membrane phase changes in chilling-sensitive Vigna radiata and their significance to growth. Aust. J. Plant Physiol. 3:291-9 61. Rikin, A., A. Blumenfeld and A.E. Richmorld (1976) Chilling resistance as affected by stressing environments and abscisic acid. Bot. Gaz. 137(4):307-312 62. Rikin, A. and A.E. Richmond (1976) Amelioration of chilling injuries in cucumber seedlings by abscisic acid. Physiol. Plant. 38:95-97 63. Shih, S.C., Jung, G.A. and D.C. Shelton (1967) Effects of temperature and photoperiod on metabolic changes in alfalfa in relation to cold hardiness. Crop Sci. 7:385-389 64. Shomer-Ilan, A., Waisel, Y. (1975) Cold hardiness of plants: Correlation with changes in electrophoretic mobility, composition of amino acids and average hydrophobicity of fraction I protein. Plant Physiol. 34:90-96 65. Sikorska, E., Kacperska-Palacz, A. (1979) Phospholipid involvement in frost tolerance. Plant Physiol. 47:144-50 66. Smillie, R.M. and R. Nott. (1979) Assay of chilling injury in wild and domestic tomatoes based on photosystem activity of chilled leaves. Plant Physiol. 63:796-801 67. Sugiyama, T., Schmitt, M.R., Ku, S.B., Edwards, G.E. (1979) Differences in cold lability of pyruvate pi dikinase among C-4 species. Plant Cell Physiol. 20:965-71 68. Sukumaran, N.P. and C.J. Weiser (1972) An excised leaflet test for evaluating potato frost tolerance. HortScience. 7(5):467-468 69. Tait, J. (1922) Am. J. physiol. 59:467 70. Trudel, M.J. and A. Gosselin (1982) Influence of soil temperature. in greenhouse tomato production: Hort Scince 17:928-929 71. Wang, C.Y., D.O. Adams (1982) Chilling-induced ethylene production in cucumbers Cucumis sativus L. Plant Physiol. 69:424-427 72. Watada, A.E., L.L. Morris, H.M. Couey, W.J. Bramlage, W.D Wolk, R.C. Herner and C.Y. Wang (1981) Chilling injury of horticultural crops. HortScince. 17(2):160-186 73. White, R.A.J. (1981) Air temperature, soil warming and phosphorus nutrition of greenhouse tomatoes. Acta Hort. 115:235-245 74. Wills, R.B.H., Hopkirk, S.G., Scott, K.J. (1981) Reduction of soft scale in apples with antioxidant. J. Am. Hort. Sci. 106: 569-71 75. Yelenosky, G. and C.L. Guy (1989) Freezing tolerance of citrus, spinach, and petunia leaf tissue. Plant Physiol. 89, 444-451 76. Young, R. (1969) Cold hardening in 'Redblish' greenfruit as related to sugars and water soluble proteins. J. Am. Soc. Hortic. Sci. 94:252-254 77. Zocchi, G., J.B. Horson (1982) Calcium influx into corn roots as a result of cold shock. Plant Physiol. 70:318-319 78. Zudo, Y.J., Kamisaka, S. and Y. Masuda (1983) Osmoregulation in hypocotyls of etiolated mung bean seedings with or without cotyledons in response to water-deficient stress. Bot. Mag. Tokyo 96:211-222 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75705 | - |
| dc.description.abstract | 本論文以低溫敏感性植物-綠豆(Vigna radiata L., VC3890A)為實驗材料,取五天大的綠豆幼苗,在4℃下處理兩天,即可造成不可逆性的傷害。將綠豆幼苗予以10℃的馴化處理,則在4℃的環境下,可視性傷害(visible injury)能獲得明顯改善。和未馴化植株做比較,經過低溫馴化處理的植株,在生理及生化代謝方面亦有差異,包括細胞膜系完整度提高、光合作用及乙烯合成能力增強、陽離子(K+、Ca2+、Mg2+)濃度改變、可溶性醣類之累積、極性胺基酸的增加、可溶性蛋白質含量提高及蛋白質合成能力增強等。這些變化都是為了減輕低溫壓迫(4℃)所造成的傷害,以增加植株生存能力的因應之道。 以電泳分析來比較馴化及未馴化植株蛋白質合成類型與量的變化,發現馴化植物會合成三群新的蛋白質,分子量分別為36、21.5及19KD,這三群蛋白質在10℃,8小時之內便已合成,且在常溫下,除了36KD蛋白質外,在24小時內多能迅速分解。 控制植株根部溫度,以研究根溫在寒害中扮演的角色,由結果得知低根溫會造成植株失水,礦物營養吸收不良,導致生理代謝作用不正常但仍能合成低溫馴化蛋白質,由電泳分析結果,得知低溫馴化蛋白質的誘導?生可能是植株地上部分對低溫環境變化所產生的反應。 | zh_TW |
| dc.description.abstract | Exposure of 5-day-old mung bean (Vigna radiata L.) seedlings (chilling-sensitive plants) to a chilling treatment of 4℃ for 2 days induced an irreversible chilling injury. Pretreatment of mung bean seedlings with 10℃ for the cold-acclimation process resulted in protection from the injury caused by a treatment at 4℃. There were many differences in physiological and biochemical changes between the acclimated and nonacclimated plants, such as cell leakage, photosynthetic activity, protein synthesis, ethylene produuction and concentrations of cations (K+, Ca2+, Mg2+), soluble sugars and the free amino acids. All these alterations produced seems resulted to release from chilling injury, and improve the survivality of chilling-sensitive plants. Changes of protein synthetic patterns during cold acclimation of mung bean seedlings were analyzed by acrylamide gel electrophoresis. Three newly synthesized proteins (acclimated proteins) with the molecular weight of 36, 21.5 and 19 KD, respectively were found by acclimation temperature of 10℃. They were induced within 8 hours and synthesis declined after one day at room temperature except 36 KD protein. When only the shoots of the seedlings were exposed to 4℃ and the lest of the seedlings were kept at 28℃ for two days, no noticeable differences were found compared to the whole seedlings were kept at 28℃. The protein synthetic patterns obtained from the shoots were also not affected by the exposure of the roots of the seedlings to 28℃. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:14:48Z (GMT). No. of bitstreams: 0 Previous issue date: 1989 | en |
| dc.description.tableofcontents | 壹、中文摘要……………………………………2 貳、英文摘要……………………………………3 參、前言……………………………………4 肆、藥品縮寫及配方……………………………………10 伍、材料與方法……………………………………12 陸、結果……………………………………21 柒、討論……………………………………32 捌、圖表……………………………………42 玖、參考文獻……………………………………72 | |
| dc.language.iso | zh-TW | |
| dc.title | 低溫馴化對綠豆(Vigna radiata L.)幼苗之生理與生化改變的影響 | zh_TW |
| dc.title | The Effects of Cold-acclimation on Physiological and Biochemical Changes in Mung Bean (Vigna radiata L.) Seedlings | en |
| dc.date.schoolyear | 77-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 80 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
