請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7567
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑞華(Ruey-Hwa Chen) | |
dc.contributor.author | Min-Yu Huang | en |
dc.contributor.author | 黃敏瑜 | zh_TW |
dc.date.accessioned | 2021-05-19T17:46:39Z | - |
dc.date.available | 2023-07-18 | |
dc.date.available | 2021-05-19T17:46:39Z | - |
dc.date.copyright | 2018-07-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-11 | |
dc.identifier.citation | 1. N. A. Thornberry, Caspases: key mediators of apoptosis. Chemistry & Biology 5, R97-R103 (1998).
2. N. K. Rai, K. Tripathi, D. Sharma, V. K. Shukla, Apoptosis: A Basic Physiologic Process in Wound Healing. The International Journal of Lower Extremity Wounds 4, 138-144 (2005). 3. J. Savill, V. Fadok, Corpse clearance defines the meaning of cell death. Nature 407, 784 (2000). 4. F. C. Kischkel et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. The EMBO Journal 14, 5579-5588 (1995). 5. X. Saelens et al., Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861 (2004). 6. S. J. Riedl, G. S. Salvesen, The apoptosome: signalling platform of cell death. Nature Reviews Molecular Cell Biology 8, 405 (2007). 7. S. M. Srinivasula, M. Ahmad, T. Fernandes-Alnemri, E. S. Alnemri, Autoactivation of Procaspase-9 by Apaf-1-Mediated Oligomerization. Molecular Cell 1, 949-957 (1998). 8. S. A. Susin et al., Two Distinct Pathways Leading to Nuclear Apoptosis. The Journal of Experimental Medicine 192, 571-580 (2000). 9. Y. Suzuki, Y. Nakabayashi, R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proceedings of the National Academy of Sciences of the United States of America 98, 8662-8667 (2001). 10. C. Du, M. Fang, Y. Li, L. Li, X. Wang, Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 102, 33-42 (2000). 11. G. van Loo et al., The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death And Differentiation 9, 20 (2002). 12. H. Sakahira, M. Enari, S. Nagata, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96 (1998). 13. G. M. Cohen, Caspases: the executioners of apoptosis. Biochemical Journal 326, 1-16 (1997). 14. V. Cavallucci, M. D’Amelio, in Apoptosome: An up-and-coming therapeutical tool, F. Cecconi, M. D'Amelio, Eds. (Springer Netherlands, Dordrecht, 2010), pp. 1-26. 15. R. S. Y. Wong, Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research : CR 30, 87-87 (2011). 16. K. Fernald, M. Kurokawa, Evading apoptosis in cancer. Trends in cell biology 23, 620-633 (2013). 17. J. M. Hardwick, L. Soane, Multiple Functions of BCL-2 Family Proteins. Cold Spring Harbor perspectives in biology 5, 10.1101/cshperspect.a008722 a008722 (2013). 18. W. A. Siddiqui, A. Ahad, H. Ahsan, The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Toxicology 89, 289-317 (2015). 19. D. T. C. and, S. J. Korsmeyer, BCL-2 FAMILY: Regulators of Cell Death. Annual Review of Immunology 16, 395-419 (1998). 20. A. Kelekar, C. B. Thompson, Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends in Cell Biology 8, 324-330 (1998). 21. S. W. Muchmore et al., X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335 (1996). 22. A. J. Minn et al., Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 385, 353 (1997). 23. Y.-T. Hsu, K. G. Wolter, R. J. Youle, Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proceedings of the National Academy of Sciences of the United States of America 94, 3668-3672 (1997). 24. G. J. Griffiths et al., Cell Damage-induced Conformational Changes of the Pro-Apoptotic Protein Bak In Vivo Precede the Onset of Apoptosis. The Journal of Cell Biology 144, 903-914 (1999). 25. A. Shamas-Din, J. Kale, B. Leber, D. W. Andrews, Mechanisms of Action of Bcl-2 Family Proteins. Cold Spring Harbor Perspectives in Biology 5, a008714 (2013). 26. L. Scorrano et al., BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science 300, 135-139 (2003). 27. W.-X. Zong et al., Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. The Journal of Cell Biology 162, 59-69 (2003). 28. V. Gogvadze, J. D. Robertson, B. Zhivotovsky, S. Orrenius, Cytochrome c Release Occurs via Ca2+-dependent and Ca2+-independent Mechanisms That Are Regulated by Bax. Journal of Biological Chemistry 276, 19066-19071 (2001). 29. C. Garrido et al., Mechanisms of cytochrome c release from mitochondria. Cell Death And Differentiation 13, 1423 (2006). 30. X.-M. Yin, Z. N. Oltvai, S. J. Korsmeyer, BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321 (1994). 31. Y. Wang et al., Oligomerization of BH4-truncated Bcl-xL in solution. Biochemical and Biophysical Research Communications 361, 1006-1011 (2007). 32. G. J. P. Rautureau et al., The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Cell Death & Disease 3, e443 (2012). 33. A. Letai et al., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192 (2002). 34. M. C. Wei et al., tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes & Development 14, 2060-2071 (2000). 35. R. J. Lutz, Role of the BH3 (Bcl-2 homology 3) domain in the regulation of apoptosis and Bcl-2-related proteins. Biochemical Society Transactions 28, 51 (2000). 36. H. Li, H. Zhu, C.-j. Xu, J. Yuan, Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis. Cell 94, 491-501 (1998). 37. E. Oda et al., Noxa, a BH3-Only Member of the Bcl-2 Family and Candidate Mediator of p53-Induced Apoptosis. Science 288, 1053 (2000). 38. M. Toshiyuki, J. C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299 (1995). 39. K. Nakano, K. H. Vousden, PUMA, a Novel Proapoptotic Gene, Is Induced by p53. Molecular Cell 7, 683-694 (2001). 40. J. P. Mathai, M. Germain, R. C. Marcellus, G. C. Shore, Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 21, 2534 (2002). 41. H. Puthalakath et al., ER Stress Triggers Apoptosis by Activating BH3-Only Protein Bim. Cell 129, 1337-1349 (2007). 42. X. Fang et al., Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 18, 6635 (1999). 43. T. Shimazu et al., NBK/BIK antagonizes MCL-1 and BCL-X(L) and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes & Development 21, 929-941 (2007). 44. B. Gillissen et al., Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. The EMBO Journal 22, 3580-3590 (2003). 45. Y. Tong et al., The Pro-apoptotic Protein, Bik, Exhibits Potent Antitumor Activity That Is Dependent on Its BH3 Domain. Molecular Cancer Therapeutics 1, 95 (2001). 46. G. Chinnadurai, S. Vijayalingam, R. Rashmi, BIK-the founding member of the BH3-only family proteins: mechanisms of cell death and role in cancer and pathogenic processes. Oncogene 27, S20-S29 (2008). 47. S. Verma, L.-j. Zhao, G. Chinnadurai, Phosphorylation of the Pro-apoptotic Protein BIK: MAPPING OF PHOSPHORYLATION SITES AND EFFECT ON APOPTOSIS. Journal of Biological Chemistry 276, 4671-4676 (2001). 48. H. Puthalakath, A. Strasser, Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death And Differentiation 9, 505 (2002). 49. M. Germain, J. P. Mathai, G. C. Shore, BH-3-only BIK Functions at the Endoplasmic Reticulum to Stimulate Cytochrome c Release from Mitochondria. Journal of Biological Chemistry 277, 18053-18060 (2002). 50. Y. A. Mebratu et al., Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nature Communications 8, 803 (2017). 51. J. P. Mathai, M. Germain, G. C. Shore, BH3-only BIK Regulates BAX,BAK-dependent Release of Ca2+ from Endoplasmic Reticulum Stores and Mitochondrial Apoptosis during Stress-induced Cell Death. Journal of Biological Chemistry 280, 23829-23836 (2005). 52. S. Shimizu, Y. Tsujimoto, Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proceedings of the National Academy of Sciences of the United States of America 97, 577-582 (2000). 53. S. Frank et al., The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis. Developmental Cell 1, 515-525 (2001). 54. I. Sturm et al., Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death And Differentiation 13, 619 (2005). 55. M. Bredel et al., High-Resolution Genome-Wide Mapping of Genetic Alterations in Human Glial Brain Tumors. Cancer Research 65, 4088 (2005). 56. P. P. Reis et al., Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer. Oncogene 21, 6480 (2002). 57. Y. Lu et al., A Gene Expression Signature Predicts Survival of Patients with Stage I Non-Small Cell Lung Cancer. PLoS Medicine 3, e467 (2006). 58. N. García et al., A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females. BMC Cancer 5, 93 (2005). 59. J. Hur et al., Regulation of Expression of BIK Proapoptotic Protein in Human Breast Cancer Cells: p53-Dependent Induction of BIK mRNA by Fulvestrant and Proteasomal Degradation of BIK Protein. Cancer Research 66, 10153 (2006). 60. R. Rashmi, S. G. Pillai, S. Vijayalingam, J. Ryerse, G. Chinnadurai, BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene 27, 1366-1375 (2008). 61. P. J. Real et al., Transcriptional activation of the proapoptotic bik gene by E2F proteins in cancer cells. FEBS Letters 580, 5905-5909 (2006). 62. X. Xie et al., Targeted Expression of BikDD Eradicates Pancreatic Tumors in Noninvasive Imaging Models. Cancer Cell 12, 52-65 (2007). 63. Y. Zou et al., Systemic Tumor Suppression by the Proapoptotic Gene bik. Cancer Research 62, 8-12 (2002). 64. Y. M. Li et al., Enhancement of Bik Antitumor Effect by Bik by its Mutants. Cancer Research 63, 7630 (2003). 65. J.-Y. Lang et al., BikDD Eliminates Breast Cancer Initiating Cells and Synergizes with Lapatinib for Breast Cancer Treatment. Cancer cell 20, 341-356 (2011). 66. X. Xie et al., Targeted Expression of BikDD Eliminates Breast Cancer with Virtually No Toxicity in Noninvasive Imaging Models. Molecular Cancer Therapeutics 11, 1915-1924 (2012). 67. Y.-P. Sher et al., Cancer-Targeted BikDD Gene Therapy Elicits Protective Antitumor Immunity against Lung Cancer. Molecular Cancer Therapeutics 10, 637 (2011). 68. Y. Sun et al., Proteasome inhibition enhances the killing effect of BikDD gene therapy. American Journal of Translational Research 7, 319-327 (2015). 69. S. Jiao et al., BikDDA, a Mutant of Bik with Longer Half-Life Expression Protein, Can Be a Novel Therapeutic Gene for Triple-Negative Breast Cancer. PLOS ONE 9, e92172 (2014). 70. H. Zhu et al., Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 24, 4993-4999 (2005). 71. M. Nikrad et al., The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Molecular Cancer Therapeutics 4, 443 (2005). 72. J. S. Diallo et al., Enhanced killing of androgen-independent prostate cancer cells using inositol hexakisphosphate in combination with proteasome inhibitors. British Journal of Cancer 99, 1613-1622 (2008). 73. G. Kleiger, T. Mayor, Perilous journey: a tour of the ubiquitin–proteasome system. Trends in cell biology 24, 352-359 (2014). 74. A. Ciechanover, The ubiquitin–proteasome pathway: on protein death and cell life. The EMBO Journal 17, 7151 (1998). 75. J. S. Thrower, L. Hoffman, M. Rechsteiner, C. M. Pickart, Recognition of the polyubiquitin proteolytic signal. The EMBO Journal 19, 94-102 (2000). 76. D. Komander, M. Rape, The Ubiquitin Code. Annual Review of Biochemistry 81, 203-229 (2012). 77. A. M. Weissman, Themes and variations on ubiquitylation. Nature Reviews Molecular Cell Biology 2, 169 (2001). 78. E. S. Zimmerman, B. A. Schulman, N. Zheng, Structural assembly of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology 20, 714-721 (2010). 79. J. Liu, R. Nussinov, Flexible Cullins in Cullin-RING E3 Ligases Allosterically Regulate Ubiquitination. Journal of Biological Chemistry 286, 40934-40942 (2011). 80. Z. Hua, R. D. Vierstra, The Cullin-RING Ubiquitin-Protein Ligases. Annual Review of Plant Biology 62, 299-334 (2011). 81. J. R. Lydeard, B. A. Schulman, J. W. Harper, Building and remodelling Cullin–RING E3 ubiquitin ligases. EMBO Reports 14, 1050-1061 (2013). 82. D. R. Bosu, E. T. Kipreos, Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Division 3, 7-7 (2008). 83. J. Merlet, J. Burger, J.-E. Gomes, L. Pintard, Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cellular and Molecular Life Sciences 66, 1924-1938 (2009). 84. Y. Li, S. Gazdoiu, Z.-Q. Pan, S. Y. Fuchs, Stability of Homologue of Slimb F-box Protein Is Regulated by Availability of Its Substrate. Journal of Biological Chemistry 279, 11074-11080 (2004). 85. J.-M. Galan, M. Peter, Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proceedings of the National Academy of Sciences of the United States of America 96, 9124-9129 (1999). 86. M. W. Schmidt, P. R. McQuary, S. Wee, K. Hofmann, D. A. Wolf, F-Box-directed CRL complex assembly and regulation by the CSN and CAND1. Molecular cell 35, 586-597 (2009). 87. Nathan W. Pierce et al., Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins. Cell 153, 206-215 (2013). 88. C. A. Andresen et al., Protein Interaction Screening for the Ankyrin Repeats and Suppressor of Cytokine Signaling (SOCS) Box (ASB) Family Identify Asb11 as a Novel Endoplasmic Reticulum Resident Ubiquitin Ligase. The Journal of Biological Chemistry 289, 2043-2054 (2014). 89. F. Okumura, A. Joo-Okumura, K. Nakatsukasa, T. Kamura, The role of cullin 5-containing ubiquitin ligases. Cell Division 11, 1 (2016). 90. S. H. Diks et al., The novel gene asb11: a regulator of the size of the neural progenitor compartment. The Journal of Cell Biology 174, 581-592 (2006). 91. J.-M. Tee et al., asb11 Is a Regulator of Embryonic and Adult Regenerative Myogenesis. Stem Cells and Development 21, 3091-3103 (2012). 92. S. H. Diks et al., d-Asb11 is an essential mediator of canonical Delta–Notch signalling. Nature Cell Biology 10, 1190 (2008). 93. M. A. Sartori da Silva et al., Essential Role for the d-Asb11 cul5 Box Domain for Proper Notch Signaling and Neural Cell Fate Decisions In Vivo. PLOS ONE 5, e14023 (2010). 94. T. Anelli, R. Sitia, Protein quality control in the early secretory pathway. The EMBO Journal 27, 315-327 (2008). 95. Y. Ma, L. M. Hendershot, ER chaperone functions during normal and stress conditions. Journal of Chemical Neuroanatomy 28, 51-65 (2004). 96. I. Kim, W. Xu, J. C. Reed, Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 7, 1013 (2008). 97. J. Shen, X. Chen, L. Hendershot, R. Prywes, ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals. Developmental Cell 3, 99-111 (2002). 98. S. Nadanaka, T. Okada, H. Yoshida, K. Mori, Role of Disulfide Bridges Formed in the Luminal Domain of ATF6 in Sensing Endoplasmic Reticulum Stress. Molecular and Cellular Biology 27, 1027-1043 (2007). 99. K. Haze, H. Yoshida, H. Yanagi, T. Yura, K. Mori, Mammalian Transcription Factor ATF6 Is Synthesized as a Transmembrane Protein and Activated by Proteolysis in Response to Endoplasmic Reticulum Stress. Molecular Biology of the Cell 10, 3787-3799 (1999). 100. Y. Shi et al., Identification and Characterization of Pancreatic Eukaryotic Initiation Factor 2 α-Subunit Kinase, PEK, Involved in Translational Control. Molecular and Cellular Biology 18, 7499-7509 (1998). 101. H. P. Harding et al., Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell 6, 1099-1108 (2000). 102. K. Ameri, A. L. Harris, Activating transcription factor 4. The International Journal of Biochemistry & Cell Biology 40, 14-21 (2008). 103. M. Schröder, R. J. Kaufman, ER stress and the unfolded protein response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 569, 29-63 (2005). 104. C. Y. Liu, H. N. Wong, J. A. Schauerte, R. J. Kaufman, The Protein Kinase/Endoribonuclease IRE1α That Signals the Unfolded Protein Response Has a Luminal N-terminal Ligand-independent Dimerization Domain. Journal of Biological Chemistry 277, 18346-18356 (2002). 105. M. Calfon et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92 (2002). 106. K. Lee et al., IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes & Development 16, 452-466 (2002). 107. C. Hetz, L. H. Glimcher, Fine tuning of the Unfolded Protein Response: Assembling the IRE1α interactome. Molecular cell 35, 551-561 (2009). 108. C. Hetz, L. Glimcher, The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends in Cell Biology 18, 38-44 (2008). 109. S. Gupta et al., HSP72 Protects Cells from ER Stress-induced Apoptosis via Enhancement of IRE1α-XBP1 Signaling through a Physical Interaction. PLOS Biology 8, e1000410 (2010). 110. D. Luo et al., AIP1 Is Critical in Transducing IRE1-mediated Endoplasmic Reticulum Stress Response. The Journal of Biological Chemistry 283, 11905-11912 (2008). 111. C. Hetz et al., Proapoptotic BAX and BAK Modulate the Unfolded Protein Response by a Direct Interaction with IRE1α. Science 312, 572 (2006). 112. U. Woehlbier, C. Hetz, Modulating stress responses by the UPRosome: A matter of life and death. Trends in Biochemical Sciences 36, 329-337 (2011). 113. F. Lisbona et al., BAX Inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Molecular cell 33, 679-691 (2009). 114. D. A. Rodriguez et al., BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. The EMBO Journal 31, 2322-2335 (2012). 115. R. Sano, J. C. Reed, ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833, 3460-3470 (2013). 116. C. Xu, B. Bailly-Maitre, J. C. Reed, Endoplasmic reticulum stress: cell life and death decisions. Journal of Clinical Investigation 115, 2656-2664 (2005). 117. S. Yi et al., Endoplasmic Reticulum Stress PERK-ATF4-CHOP Pathway Is Associated with Hypothalamic Neuronal Injury in Different Durations of Stress in Rats. Frontiers in Neuroscience 11, 152 (2017). 118. Z. Galehdar et al., Neuronal Apoptosis Induced by Endoplasmic Reticulum Stress Is Regulated by ATF4–CHOP-Mediated Induction of the Bcl-2 Homology 3-Only Member PUMA. The Journal of Neuroscience 30, 16938 (2010). 119. J. Hollien et al., Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. The Journal of Cell Biology 186, 323-331 (2009). 120. J.-P. Upton et al., IRE1α Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2. Science (New York, N.Y.) 338, 818-822 (2012). 121. I. Yusuke, H. Akira, S. Shin-ichi, T. Akio, K. Kenji, RNase domains determine the functional difference between IRE1α and IRE1β. FEBS Letters 582, 656-660 (2008). 122. C. Lebeaupin et al., ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death & Disease 6, e1879 (2015). 123. J. H. Lin, H. Li, Y. Zhang, D. Ron, P. Walter, Divergent Effects of PERK and IRE1 Signaling on Cell Viability. PLoS ONE 4, e4170 (2009). 124. J. Wu, G. T. He, W. J. Zhang, J. Xu, Q. B. Huang, IRE1α Signaling Pathways Involved in Mammalian Cell Fate Determination. Cellular Physiology and Biochemistry 38, 847-858 (2016). 125. J. H. Lin et al., IRE1 Signaling Affects Cell Fate During the Unfolded Protein Response. Science (New York, N.Y.) 318, 944-949 (2007). 126. S. P. Skandan, 5 year Overall survival of triple negative breast cancer: A single institution experience. Journal of Clinical Oncology 34, e12580-e12580 (2016). 127. W. D. Foulkes, I. E. Smith, J. S. Reis-Filho, Triple-Negative Breast Cancer. New England Journal of Medicine 363, 1938-1948 (2010). 128. R. Dent et al., Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clinical Cancer Research 13, 4429 (2007). 129. C. A. Hudis, L. Gianni, Triple-Negative Breast Cancer: An Unmet Medical Need. The Oncologist 16, 1-11 (2011). 130. B. S. Yadav, P. Chanana, S. Jhamb, Biomarkers in triple negative breast cancer: A review. World Journal of Clinical Oncology 6, 252-263 (2015). 131. J. M. Balko et al., Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer discovery 4, 232-245 (2014). 132. M. Dai et al., CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer. Scientific Reports 6, 35383 (2016). 133. L. Zhou et al., Novel prognostic markers for patients with triple-negative breast cancer. Human Pathology 44, 2180-2187 (2013). 134. X. Chen et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103 (2014). 135. K. Yamamoto, H. Yoshida, K. Kokame, R. J. Kaufman, K. Mori, Differential Contributions of ATF6 and XBP1 to the Activation of Endoplasmic Reticulum Stress-Responsive cis-Acting Elements ERSE, UPRE and ERSE-II. The Journal of Biochemistry 136, 343-350 (2004). 136. D. Acosta-Alvear et al., XBP1 Controls Diverse Cell Type- and Condition-Specific Transcriptional Regulatory Networks. Molecular Cell 27, 53-66 (2007). 137. D. Jiang, M. Niwa, A. C. Koong, Targeting the IRE1α-XBP1 Branch of the Unfolded Protein Response in Human Diseases. Seminars in cancer biology 33, 48-56 (2015). 138. A. Ballesta et al., Data-Driven Modeling of Src Control on the Mitochondrial Pathway of Apoptosis: Implication for Anticancer Therapy Optimization. (2013), vol. 9, pp. e1003011. 139. Y. A. Mebratu, B. F. Dickey, C. Evans, Y. Tesfaigzi, The BH3-only protein Bik/Blk/Nbk inhibits nuclear translocation of activated ERK1/2 to mediate IFNγ-induced cell death. The Journal of Cell Biology 183, 429-439 (2008). 140. Matthew J. Sale, Simon J. Cook, The increase in BIK expression following ERK1/2 pathway inhibition is a consequence of G1 cell-cycle arrest and not a direct effect on BIK protein stability. Biochemical Journal 459, 513-524 (2014). 141. C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 13, 89 (2012). 142. W. Rozpędek et al., The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress. Current molecular medicine 16, 533-544 (2016). 143. H. Yoshida, K. Haze, H. Yanagi, T. Yura, K. Mori, Identification of the cis-Acting Endoplasmic Reticulum Stress Response Element Responsible for Transcriptional Induction of Mammalian Glucose-regulated Proteins: INVOLVEMENT OF BASIC LEUCINE ZIPPER TRANSCRIPTION FACTORS. Journal of Biological Chemistry 273, 33741-33749 (1998). 144. K. Yamanaka et al., Expression levels of NF-Y target genes changed by CDKN1B correlate with clinical prognosis in multiple cancers. Genomics 94, 219-227 (2009). 145. R. K. Yadav, S.-W. Chae, H.-R. Kim, H. J. Chae, Endoplasmic Reticulum Stress and Cancer. Journal of Cancer Prevention 19, 75-88 (2014). 146. A. N. Shajahan, R. B. Riggins, R. Clarke, The Role of XBP-1 in Tumorigenicity. Drug news & perspectives 22, 241-246 (2009). 147. N. Zhao et al., Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. The Journal of Clinical Investigation 128, 1283-1299 (2018). 148. M. Iyer et al., Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proceedings of the National Academy of Sciences 98, 14595-14600 (2001). 149. M. A. Abd-Elazeem, M. A. Abd-Elazeem, Claudin 4 expression in triple-negative breast cancer: correlation with androgen receptors and Ki-67 expression. Annals of Diagnostic Pathology 19, 37-42 (2015). 150. J.-L. Coll et al., In Vivo Delivery to Tumors of DNA Complexed with Linear Polyethylenimine. Human Gene Therapy 10, 1659-1666 (1999). 151. D. A. Balazs, W. T. Godbey, Liposomes for Use in Gene Delivery. Journal of Drug Delivery 2011, 326497 (2011). 152. S. Daya, K. I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors. Clinical Microbiology Reviews 21, 583-593 (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7567 | - |
dc.description.abstract | BIK (Bcl2-interacting killer)屬於Bcl2家族中BH3-only的促進細胞凋亡蛋白。BIK藉由跟抑制細胞凋亡蛋白包括Bcl-2、Bcl-xL和Mcl-1相互作用進而促使細胞走向細胞凋亡。BIKDD是一個持續活化的BIK變異,能透過和抑制細胞凋亡蛋白有更好的相互作用,來更加增強細胞走向細胞凋亡的功能以達到殺死癌症細胞的目的。然而BIK和BIKDD的半衰期很短,蛋白不穩定性成為BIK在癌症基因治療上的限制。因此,了解BIK和BIKDD的降解機制就變得相當重要。使用dominant-negative形式的Cullin和基因表現降低技術,我們發現Cul5參與在BIK的泛素化和降解中。在所有Cul5的受質連接體中,我們經由泛素化分析確認ASB11可以增加BIK的泛素化,反之,不能連接Cul5的ASB11變異不行。在多株不同的細胞中降低ASB11的表現量會使BIK上升,暗示著ASB11所促進的泛素化會使BIK降解。另外,我們也在泛素化分析中發現,ASB11可將泛素加在BIK K115和K160的位置上並使得BIK被降解。了解了BIK的泛素化降解機制後,接下來,我們想知道怎樣的生理情況可以調控BIK的ASB11-based Cul5降解機制。我們發現ASB11的mRNA和蛋白皆會在加入促進內質網壓力藥物tunicamycin和thapsigargin時會有上升的情形。結果顯示,在許多不同的細胞株中,內質網壓力都可以透過ASB11的上升來加速降解BIK使得BIK的半衰期縮短。另外我們進一步發現,ASB11的上升源自於內質網壓力所導致的UPR之一─IRE1α/XBP1。活化的IRE1會促使轉錄因子XBP1進入細胞核,進而使下游基因的表現,而我們認為ASB11就是XBP1的轉錄目標基因。從染色體免疫沉澱實驗的結果發現,XBP1的確可以結合到ASB11啟動子上。因此,我們提出一個模式,XBP1會和基礎表現的NF-Y形成複合體,並且藉由結合NF-Y,結合到NF-Y在ASB11啟動子上的結合位,以增加ASB11的轉錄。另外,我們也確認了BIKDD也和BIK走相同的機制,在內質網壓力的情況下,ASB11-based Cul5降解機制會被提升使得BIKDD的穩定性下降。因此,我們假設抑制IRE1α/XBP1可以穩定BIKDD,並且增強殺死腫瘤細胞的效果。結果發現,使用IRE1抑制劑STF-083010結合BIKDD,成功的在數個三陰性乳癌(TNBC)細胞株和裸鼠中都比單獨使用BIKDD有更好的治療效果,成功的應證了我們的假設。總結以上,本篇研究找到了BIK的降解機制,並且發現此機制在內質網壓力下會被提升,並且在細胞試驗和老鼠層次中我們發現,結合抑制劑和BIKDD可以在三陰性乳癌有加乘的治療效果。 | zh_TW |
dc.description.abstract | BIK (Bcl2-interacting killer) is a pro-apoptotic BH3-only protein of Bcl2 family. BIK interacts with the anti-apoptotic proteins, including Bcl-2, Bcl-xL and Mcl-1 to neutralize their function. BIKDD, a constitutively active mutant of BIK with an enhanced interaction with anti-apoptotic proteins, has been shown to elicit an anti-cancer activity. However, BIKDD is of a short half-life, which limits its tumor-killing effect. Thus, it would be important to unravel the degradation mechanism of BIK and BIKDD. Using dominant-negative mutants and knockdown approaches, we identify a role of Cul5-based ubiquitin ligase in mediating BIK degradation. Among the substrate adaptors of Cul5, ASB11, but not its mutant, promotes BIK ubiquitination. Knockdown of ASB11 in multiple cell lines elevates BIK level, indicating that ASB11-mediated ubiquitination leads to BIK degradation. We further identify the critical role of BIK K115 and K160 resides for its ubiquitination and degradation by ASB11. Next, we explore the physiological conditions that could regulate this BIK ubiquitination pathway. Importantly, ER stress inducers tunicamycin and thapsigargin upregulate ASB11 mRNA and protein. As a consequence, ER stress increases BIK protein turnover via proteasome and decreases BIK steady-state level in multiple cell lines. We further show that the IRE1α/XBP1 axis of ER stress-induced unfolded protein responses is responsible for ASB11 upregulation and that ASB11 is a transcriptional target of XBP1. Our findings support a model that XBP1 can form a complex with the basal transcription factor NF-Y. This complex is recruited to the NF-Y binding site in ASB11 promoter to evaluate ASB11 transcription. Finally, we tried to apply our findings to the gene therapy treatment of triple negative breast cancer (TNBC). Similar to BIK, BIKDD is also subjected to ASB11-dependent ubiquitination and degradation, which are also promoted by ER stress. This raises the possibility for targeting the IRE1α/XBP1 axis to enhance the anti-tumor activity of BIKDD. Indeed, MTT assay show that combination of IRE1 inhibitor, STF-083010 with BIKDD has a better killing effect than BIKDD alone on several TNBC cell lines. Furthermore, the combined treatment strategy also has a better tumor killing effect in the mouse model. Thus, our findings identify a BIK ubiquitination pathway, uncover the promotion effect of ER stress on this pathway, and highlight the potential of targeting this pathway combined with active BIK for anti-cancer therapy. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:46:39Z (GMT). No. of bitstreams: 1 ntu-107-R04B46031-1.pdf: 3294782 bytes, checksum: 684c5c65e498e979c0fad500695fa5ea (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書..........i
謝辭..........ii 中文摘要..........iii Abstract..........v List of figures..........ix I. Introduction..........1 1. Apoptosis..........1 2. Bcl-2 family protein..........3 3. Bcl-2-interacting killer (BIK)..........6 4. Ubiquitination-proteasome system (UPS)..........8 (1) Cullin-RING E3 ligase (CRL)..........9 (2) Ankyrin repeat and SOCS box containing 11 (ASB11)..........11 5. Endoplasmic reticulum stress (ER stress)..........12 (1) Unfolding protein response (UPR)..........13 (2) Dynamic regulation of UPR in controlling cell fate decision..........15 6. Triple negative breast cancer (TNBC)..........17 II. Materials and Methods..........19 Cell culture..........19 Transient transfection and plasmid..........19 Cell lysate preparation and western blot..........19 In vivo ubiquitination assay..........21 Lentivirus production and infection..........22 RNA extraction, reverse transcription and qPCR..........22 Cell viability assay (MTT)..........23 Chromatin immunoprecipitation assay (ChIP)..........24 Animal experiment..........25 III. Results..........27 Knockdown of Cullin5 but not Cullin2 increases the expression level of BIK..........27 ASB11 but not its mutant promotes the ubiquitination of BIK..........27 Knockdown of ASB11 increases the protein level of BIK..........28 ASB11 promotes BIK ubiquitination at lysine115 and 160..........29 ASB11 cannot promote the degradation of BIK(2KR) mutant..........29 ER stress upregulates the mRNA and protein level of ASB11 and destabilizes BIK..........30 ER stress promotes BIK proteasomal degradation through an ASB11-dependent manner..........31 XBP1 is recruited to the ASB11 promoter..........32 ER stress and ASB11 promote BIKDD downregulation..........33 Combined treatment of IRE1 inhibitor-STF and BIKDD enhance the tumor killing effect..........34 Combined treatment of STF and BIKDD enhances the tumor killing effect in the TNBC bearing nude mice..........35 IV. Discussions..........37 V. Reference..........44 VI. Figures..........55 VII. Appendix..........72 | |
dc.language.iso | en | |
dc.title | 內質網壓力促進BIK泛素化機制及其治療上的應用 | zh_TW |
dc.title | Identification of ER stress induced BIK ubiquitination pathway and its therapeutic application | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 冀宏源(Peter Chi),徐立中(Li-Chung Hsu) | |
dc.subject.keyword | BIK,泛素化,內質網壓力,抗癌療法, | zh_TW |
dc.subject.keyword | BIK,ubiquitination,ER stress,anti-cancer therapy, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201801438 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2018-07-11 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
dc.date.embargo-lift | 2023-07-18 | - |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf | 3.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。