Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7560
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏呈(Bo-Cheng Kuo)
dc.contributor.authorYa-Ping Chenen
dc.contributor.author陳雅苹zh_TW
dc.date.accessioned2021-05-19T17:46:28Z-
dc.date.available2021-08-01
dc.date.available2021-05-19T17:46:28Z-
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-17
dc.identifier.citationAllen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135(2), 298-313. doi:10.1037/0096-3445.135.2.298
Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. doi:10.1111/j.0963-7214.2004.01502006.x
Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208. doi:10.1016/j.neuroscience.2005.08.023
Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.
Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556-559. doi:10.1126/science.1736359
Baldauf, D., & Desimone, R. (2014). Neural mechanisms of object-based attention. Science, 344(6182), 424-427. doi:10.1126/science.1247003
Bauer, M., Oostenveld, R., Peeters, M., & Fries, P. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. The Journal of Neuroscience, 26(2), 490-501. doi:10.1523/jneurosci.5228-04.2006
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436. doi:10.1163/156856897x00357
Brovelli, A., Lachaux, J.-P., Kahane, P., & Boussaoud, D. (2005). High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. NeuroImage, 28(1), 154-164. doi:10.1016/j.neuroimage.2005.05.045
Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35(1), 203-225. doi:10.1146/annurev-neuro-062111-150444
Chun, M. M., & Johnson, M. K. (2011). Memory: enduring traces of perceptual and reflective attention. Neuron, 72(4), 520-535. doi:10.1016/j.neuron.2011.10.026
Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 62-101). Cambridge, UK: Cambridge University Press.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114. doi:10.1017/S0140525X01003922
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820-829. doi:10.1038/35097575
Duncan, J. (2013). The structure of cognition: attentional episodes in mind and brain. Neuron, 80(1), 35-50. doi:10.1016/j.neuron.2013.09.015
Edin, F., Klingberg, T., Johansson, P., McNab, F., Tegnér, J., & Compte, A. (2009). Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6802-6807. doi:10.1073/pnas.0901894106
Feintuch, U., & Cohen, A. (2002). Visual attention and coactivation of response decisions for features from different dimensions. Psychological Science, 13(4), 361-369. doi:10.1111/j.0956-7976.2002.00465.x
Fitousi, D. (2018). Feature binding in visual short term memory: A General Recognition Theory analysis. Psychonomic Bulletin & Review, 25(3), 1104-1113. doi:10.3758/s13423-017-1303-y
Fries, P. (2015). Rhythms for cognition: communication through coherence. Neuron, 88(1), 220-235. doi:10.1016/j.neuron.2015.09.034
Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 1560-1563. doi:10.1126/science.291.5508.1560
Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience, 29(27), 8726-8733. doi:10.1523/jneurosci.2145-09.2009
Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129-135. doi:10.1016/j.tics.2011.11.014
Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., & Salmelin, R. (2001). Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 694-699. doi:10.1073/pnas.98.2.694
Herrmann, C. S., Munk, M. H. J., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences, 8(8), 347-355. doi:10.1016/j.tics.2004.06.006
Hollingworth, A., & Rasmussen, I. P. (2010). Binding objects to locations: the relationship between object files and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 543-564. doi:10.1037/a0017836
Honkanen, R., Rouhinen, S., Wang, S. H., Palva, J. M., & Palva, S. (2015). Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cerebral Cortex, 25(10), 3788-3801. doi:10.1093/cercor/bhu263
Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324. doi:10.1016/j.tins.2007.05.001
Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193-224. doi:10.1146/annurev.psych.59.103006.093615
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175-219. doi:10.1016/0010-0285(92)90007-O
Klimesch, W., Freunberger, R., & Sauseng, P. (2010). Oscillatory mechanisms of process binding in memory. Neuroscience and Biobehavioral Reviews, 34(7), 1002-1014. doi:10.1016/j.neubiorev.2009.10.004
Kondo, A., & Saiki, J. (2012) Feature-specific encoding flexibility in visual working memory. PLoS One, 7(12): e50962. doi:10.1371/journal.pone.0050962
Kuo, B. C., Rao, A., Lepsien, J., & Nobre, A. C. (2009). Searching for targets within the spatial layout of visual short-term memory. The Journal of Neuroscience, 29(25), 8032-8038. doi:10.1523/jneurosci.0952-09.2009
Landau, A. N., Schreyer, H. M., van Pelt, S., & Fries, P. (2015). Distributed attention is implemented through theta-rhythmic gamma modulation. Current Biology, 25(17), 2332-2337. doi:10.1016/j.cub.2015.07.048
Logie, R. H., Brockmole, J. R., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & Cognition, 39(1), 24-36. doi:10.3758/s13421-010-0001-z
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. doi:10.1038/36846
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391-400. doi:10.1016/j.tics.2013.06.006
Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632-1639. doi:10.1016/j.neuropsychologia.2010.11.031
Magazzini, L., & Singh, K. D. (2018). Spatial attention modulates visual gamma oscillations across the human ventral stream. NeuroImage, 166, 219-229. doi:10.1016/j.neuroimage.2017.10.069
Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Lachaux, J.-P. (2007). Neural correlates of consolidation in working memory. Human Brain Mapping, 28, 183-193. doi:10.1002/hbm.20264
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177-190. doi:10.1016/j.jneumeth.2007.03.024
Mcclelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375-407. doi:10.1037/0033-295x.88.5.375
Miller, J. (1982). Divided attention: evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247-279. doi:10.1016/0010-0285(82)90010-X
Minini, L., Parker, A. J., & Bridge, H. (2010). Neural modulation by binocular disparity greatest in human dorsal visual stream. Journal of Neurophysiology, 104(1), 169-178. doi:10.1152/jn.00790.2009
Mitra, P. P., & Pesaran, B. (1999). Analysis of dynamic brain imaging data. Biophysical Journal, 76(2), 691-708. doi:10.1016/S0006-3495(99)77236-X
Mordkoff, J. T., & Danek, R. H. (2011). Dividing attention between color and shape revisited: redundant targets coactivate only when parts of the same perceptual object. Attention, Perception & Psychophysics, 73(1), 103-112. doi:10.3758/s13414-010-0025-2
Mordkoff, J. T., & Yantis, S. (1991). An interactive race model of divided attention. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 520-538. doi:10.1037/0096-1523.17.2.520
Morgan, H. M., Muthukumaraswamy, S. D., Hibbs, C. S., Shapiro, K. L., Bracewell, R. M., Singh, K. D., & Linden, D. E. J. (2011). Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination. Journal of Neurophysiology, 106(6), 3185-3194. doi:10.1152/jn.00246.2011
Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Sciences, 21(6), 449-461. doi:10.1016/j.tics.2017.03.010
Nobre, A. C., Griffin, I. C., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 4. doi:10.3389/neuro.09.004.2007
Noles, N. S., Scholl, B. J., & Mitroff, S. R. (2005). The persistence of object file representations. Perception and Psychophysics, 67(2), 324-334. doi:10.3758/BF03206495
Nolte, G. (2003). The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine and Biology, 48(22), 3637-3652. doi:10.1088/0031-9155/48/22/002
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. doi:10.1016/0028-3932(71)90067-4
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 9. doi:10.1155/2011/156869
Poch, C., Campo, P., & Barnes, G. R. (2014). Modulation of alpha and gamma oscillations related to retrospectively orienting attention within working memory. The European Journal of Neuroscience, 40(2), 2399-2405. doi:10.1111/ejn.12589
Raab, D. H. (1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24(5), 574-590. doi:10.1111/j.2164-0947.1962.tb01433.x
Ray, S., & Maunsell, J. H. (2015). Do gamma oscillations play a role in cerebral cortex? Trends in Cognitive Sciences, 19(2), 78-85. doi:10.1016/j.tics.2014.12.002
Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25. doi:10.1016/j.tics.2013.10.010
Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. The Journal of Neuroscience, 32(36), 12411-12420. doi:10.1523/jneurosci.0421-12.2012
Saiki, J. (2016). Location-unbound color-shape binding representations in visual working memory. Psychological Science, 27(2), 178-190. doi:10.1177/0956797615616797
Saiki, J., & Miyatsuji, H. (2007). Feature binding in visual working memory evaluated by type identification paradigm. Cognition, 102(1), 49-83. doi:10.1016/j.cognition.2005.12.005
Sala, J. B., & Courtney, S. M. (2007). Binding of what and where during working memory maintenance. Cortex, 43(1), 5-21. doi:10.1016/S0010-9452(08)70442-8
Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience & Biobehavioral Reviews, 32(5), 1001-1013. doi:10.1016/j.neubiorev.2008.03.014
Schneegans, S., & Bays, P. M. (2017). Neural architecture for feature binding in visual working memory. The Journal of Neuroscience, 37(14), 3913-3925. doi:10.1523/jneurosci.3493-16.2017
Shadlen, M. N., & Movshon, J. A. (1999). Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron, 24(1), 67-77, 111-125. doi:10.1016/S0896-6273(00)80822-3
Shafritz, K. M., Gore, J. C., & Marois, R. (2002). The role of the parietal cortex in visual feature binding. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10917-10922. doi:10.1073/pnas.152694799
Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-band activity during the delay of a visual short-term memory task in humans. The Journal of Neuroscience, 18(11), 4244-4254. doi: 10.1523/ jneurosci.18-11-04244.1998
Treisman, A. M., & Zhang, W. (2006). Location and binding in visual working memory. Memory & Cognition, 34(8), 1704-1719. doi:10.3758/BF03195932
Tseng, P., Chang, Y. T., Chang, C. F., Liang, W. K., & Juan, C. H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Report, 6, 32138. doi:10.1038/srep32138
Van Dam, W. O., & Hommel, B. (2010). How object-specific are object files? Evidence for integration by location. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1184-1192. doi:10.1037/a0019955
Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44(9), 867-880. doi:10.1109/10.623056
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6894), 748-751. doi:10.1038/nature02447
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. doi:10.1038/nature04171
Wang, B., Cao, X., Theeuwes, J., Olivers, C. N., & Wang, Z. (2016). Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision, 16(11), 12. doi:10.1167/16.11.12
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48-64. doi:10.1037/0096-3445.131.1.48
Wilson, T. W., McDermott, T. J., Mills, M. S., Coolidge, N. M., & Heinrichs-Graham, E. (2018). tDCS modulates visual gamma oscillations and basal alpha activity in occipital cortices: Evidence from MEG. Cerebral Cortex, 28(5), 1597-1609. doi:10.1093/cercor/bhx055
Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature, 439(7077), 733-736. doi:10.1038/nature04258
Yang, P., Fan, C., Wang, M., Fogelson, N., & Li, L. (2017). The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study. NeuroImage, 157, 351-363. doi:10.1016/j.neuroimage.2017.06.031
Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235. doi:10.1038/nature06860
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7560-
dc.description.abstract過去研究指出具有多重特徵的物體會以整合的形式表徵於工作記憶中。雖然這些研究結果顯示空間位置在視覺工作記憶中的特徵整合扮演重要的角色,然而物體的空間位置與工作記憶中特徵整合表徵的神經機制仍有待進一步的研究。在本研究中,我藉由視覺工作記憶作業典範,並結合修正的「冗餘增益」派典、行為模型和腦磁圖,探討空間位置對物體於工作記憶表徵特徵整合調節的神經機制。共有十八位健康成人參與腦磁圖實驗,在進行實驗的記憶過程中,實驗參與者首先會同時看到並要記住兩個物體,這兩個物體皆具有兩個特徵-字母和顏色,經過短暫的記憶維持階段後,實驗參與者必須在測驗階段中指出此時出現的物體是否具備記憶物體的任一特徵(字母或顏色),此一判斷不須考慮物體的空間位置。我首先使用「賽跑模式不等式」檢驗受試者的反應時間,反應時間的累積密度函數顯示,當測驗階段呈現的物體同時具有記憶物體的兩個特徵時,會出現特徵共活化的現象並支持特徵連結的假設,而此現象不受到特徵空間位置的影響。無論特徵位置改變與否,當物體以特徵整合的形式呈現時,我在頂葉皆可以觀察到較強烈的Gamma波。最後,我以時間序列的結果支持特徵整合發生在後頂葉與視覺皮質。這些研究結果支持了物體的特徵整合不會受到空間位置改變的影響。zh_TW
dc.description.abstractPrevious studies have shown that feature-integrated object representations are formed in visual working memory (WM). While these findings highlighted the importance of spatial location in feature binding in visual WM, the underlying neural substrates of location-shared and feature-bound representations in visual WM were not fully investigated. Here I address this issue in a visual WM task with a modified redundancy-gain paradigm, using behavioral modeling and magnetoencephalograhy (MEG). In this study, participants (N = 18) performed a WM task in which they viewed two types of feature (colors and letters) in a two-object memory display, following a short delay, and a single object probe. Their task was to indicate whether the probe item contained any feature in the memory display, regardless of its location. I firstly conducted a race model inequality (RMI) test to examine the response time (RT) data. The cumulative density function of the RT suggested feature integration when the probe item contained two features regardless of its location. Next, I found significant gamma activity in the parietal cortex for feature-bound representations in both shared- and unshared-location conditions. Finally, the time-series data confirmed the feature-bound effect in posterior parietal and early visual areas. In conclusion, the results provide novel evidence in behavioral and neural measures and suggest that feature-bound representations can be independent to object location.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:46:28Z (GMT). No. of bitstreams: 1
ntu-107-R05227114-1.pdf: 2214984 bytes, checksum: 2537c18d31332a2b9f75f34c86653f89 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents iv
Introduction 1
Methods 6
Participants 6
Stimuli 6
Task Design 7
Experimental Procedure 11
Behavioral Analysis 11
MEG Acquisition and Recording Parameters 13
Structural MRI Acquisition and Scanning Parameters for MEG Analysis 14
MEG Data Analysis 14
Results 21
Behavioral Results 21
RMI Results 24
MEG Results 26
Discussion 31
Reference 36
dc.language.isoen
dc.title空間位置的調節與物體特徵的整合於工作記憶的神經機制探討:腦磁圖研究zh_TW
dc.titleNeural Correlates for Location-Shared and Feature-Bound Representations in Visual Working Memory: An MEG Studyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommitteeJun Saiki(Jun Saiki),阮啟弘(Chi-Hung Juan),葉怡玉(Yei-Yu Yeh)
dc.subject.keyword工作記憶,特徵連結,物體位置,冗餘增益,Gamma波,zh_TW
dc.subject.keywordworking memory,feature binding,object location,redundancy gain,gamma-band activity,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201801580
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf2.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved