請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75565完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Lih-Ying Guo | en |
| dc.contributor.author | 郭莉瑛 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:13:54Z | - |
| dc.date.available | 2021-07-01T08:13:54Z | - |
| dc.date.issued | 1986 | |
| dc.identifier.citation | 1.戶塚昭、原昌道 1981“固定化微生物による赤ぶどづ酒中の□ンゴ酸の分解”。醱酵工學,59: 231?237。 2.江晃榮 1983,由纖維質碳水化合物的生物轉化生產液態燃料之研究,國立臺灣大學農業化學研究所博士論文。 3.後膝昭二、山崎真司、山川祥秀、橫塚勇1978.“ぶどづ酒酵母よ野生酵母のリんご酸分解能”。醱酵工學,56: 133?135。 4.徐涵明、冉亦文 1985“葡萄酒微生物減酸試驗。”酒類試驗所,製酒料技專論彙編,第七期:39?45。 5.章麗雲 1982.利用米酒廠廢液進行檸樣酸醱酵,國立臺灣大學植物科學研究所碩士論文。 6.陶建英 1984.利用黑麴菌固定化分生孢子進行檸檬酸生產,國立臺灣大學植物科學研究所碩士論文。 7.劉姮昭 1980.蘋果酸乳酸醱酵菌的篩選及其葡萄酒酸度之影響,國立臺灣大學植物科學研究所碩士論文。 8.謝尤敏 1986.利用固定化乳酸菌進行蘋果酸乳酸醱酵,國立臺灣大學植物科學研究所碩士論文。 9. Amerine, B. and Cruess. 1972. Technology of wine making. The AVI. Pub. Co. Inc. Westport Conn. pp. 163-164. 10. Beelman, R. B. and J. F. Gallrander. 1979. Wine deacidification. Adv. Fd. Res. 25:1-53. 11. Bucke, C. and Wiseman, A. 1982. Biotechnology –– immobilized enzymes and cells. pp. 288-294. 12. Davis, D. R., D. Wibowo, R. Eschenbruch, T. E. Lee and G. H. Fleet. 1985. Practical implications of malolactic fermentation: a review. Am. J. Enol. Vitic. 36:290-301. 13. Florenzano, G., W. Balloni and R. Materassi. 1977. A distribution to the ecology of fission yeasts on grapes. Vitis 16:38-44. 14. Fukui, S. and A. Tanaka. 1982. Immobilized microbial cells. Ann. Rev. Microbiol. 36:145-172. 15. Lee, S. O. and M. Y. Pack. 1980. Immobilization of Leuconostoc oenos cells for wine deacidification. Korean J. Fd. Sci. & Technol. 12:299-304. 16. Lodder, J. (ed.) 1970. The Yeasts, a taxonomic study, 2nd., North-Holland Pub. Co., Amsterdam-London. pp.733-755. 17. Loung, J. H. T. 1985. Cell immobilization in K-carra-geenan for ethanol production. Biotechnol. Bioeng. 27:1652-1661. 18. Maconi, E., P. L. Manachini, F. Aragozzin, C. Gennari and G. S. Ricca. 1984. A study of the malo-alcoholic fermentation pathway in Schizosaccharomyces pombe. Biochem. J. 217:585-588. 19. Maynard, A., Amerine and R. E. Kunkee. 1968. Microbiology of winemaking. Ann. Rev. Microbiol. 323-350. 20. McGhee, J. E., G. ST. Julian and Detroy. 1982. Continuous and static fermentation of glucose to ethanol by immobilized Saccharomyces cerevisiae cells of different ages. Appl. Environ. Microbiol. 44:19-22. 21. Methods of enzymatic food analysis. 1981. Boehringer Mannheim Biochemicals, Indianapolis, Indiana. 22. Ohlson, S., P. O. Larsson and K. Mosbach. 1979. Steroid transformation by living cells immobilized by calcium alginate. Eur. J. Appl. Microbiol. Biotechnol. 7:103-110. 23. Prescott & Dunn's Industial Microbiology. ed. by G. Reed 1982. 4th. edition. 24. Rankine, B. C. 1966. Decomposition of L-malic acid by wine yeasts. J. Sci. Fd. Agric. 17:312-316. 25. Rehm, H. J. and G. Reed. 1983. Biotechnology Vol. 5. Verlag Chemie GmbH, D-6940 Weinheim. 26. Rose, A. H. and J. S. Harrison. 1970. The yeasts. Vol. 3, Yeast technology., pp. 44-45. Academic Press, London & New York. 27. Symposium on immobilized microbial cells, p.1-11, ed. by Venkatasubramanian, K., 176th Annual Meeting of American Chemical Society, 1978. 28. Temperli, A., U. K?nsch, K. Mayer and I. Busch. 1965. Reinigung und eigenschaften der malatdehydrogenase (decarboxylierent) aus hefe. Biochim. Biophy. Acta. 110: 630-632. 29. Wada, M. J. Kato. and I. Chibata. 1980. Continuous production of erhanol using immobilized growing yeast cells. Eur. J. Appl. Micrbiol. Biotechnol. 10:275-287. 30. Wibowo, D., R. Eschenbruch, C. R. Davis, G. H. Fleet and T. H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine : a review. Am. J. Enol. Vitic., 36: 302-313. 31. Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23:1813-1825. 32. Yang, H. Y, 1973. Effect of pH on the activity of Schizosaccharomyces pombe. J. Fd. Sci., 38:1156-1157. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75565 | - |
| dc.description.abstract | 利用Schizosaccharomyces pombe TMB 1138固定於Calccium alginate之膠體上,進行蘋果酸酒精醱酵。含2.0×107之細胞懸浮液4 ml,包埋於Sodium alginate水溶液中,以製成2% Na-alginate(w/v),然後逐滴加入0.1M CaCl2溶液中,膠體在室溫下靜置3?4小時,便形成2% Ca-alginate,直徑約?4 mm。 以葡萄汁在28℃下活化24小時後,取300顆膠體加入醱酵用培養基,內含L-malic acid 10 mg/ml, Na-citrate 0.1M和Na-phosphate 0.2M, pH值?3.50。於25℃或28℃下振盪醱酵24小時後,可將培養基內的蘋果酸完全利用,並可使總酸度降低。固定化分裂酵母菌在37℃的高溫下,亦有很高的醱酵能力;且對酒精具有抗性,其濃度至少可達15%(v/v)。 同樣條件下作分批式醱酵,在醱酵用培養基中可維持於97%以上的蘋果酸利用率達7天之久;而在葡萄汁中維持4天85%的利用率;在白葡萄酒中,亦可維持4天87%的利用率。以白葡萄酒作連續醱酵時,24小時後可達92%的蘋果酸利用率,而後9天中維持75%。 | zh_TW |
| dc.description.abstract | Schizosaccharomyces pombe TMB 1138 was immobilized in calcium alginate beads for use in the malo-alcoholic fermentation. A 4 ml cell suspension containing about 2.0 x 107 cells was entrapped into sodium alginate solution in order to prepare 2% Na-alginate (w/v), and then added drops to 0.1 M CaCl2 solution; the beads were allowed to stand at room temperature for 3-4 hrs to form 2% Ca-alginate, the diameter of bead was about 4 mm. After activation by incubation at 28℃ for 24 hrs in grape juice, 300 beads of immobilized cells were inoculated into fermentation medium containing 10 mg/ml L-malic acid, 0.1 M sodium citrate and 0.2 M sodium phosphate, pH 3.50. After fermentation at 25℃ or 28℃ for 24 hrs by shaking, it could utilize L-malic acid completely and reduce the total acidity. The immobilized cells also had high malo-alcoholic fermentation activity at higher temperature (37℃) and was quite resistant to alcohol even at 15% (v/v). Under the same condition for batch fermentation, it was found that the utilization of L-malic acid was over 97% for 7 days in fermentation medium, 85% for 4 days in grape juice and 87% for 4 days in wine. Additionally, for the continuous fermentation in wine, the utilization of L-malic acid reached up to 92% at 24 hrs and maintained at 75% in the later 9 days. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:54Z (GMT). No. of bitstreams: 0 Previous issue date: 1986 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………………………………1 英文摘要……………………………………………………………………………………………………2 緒言…………………………………………………………………………………………………………3 材料與方法…………………………………………………………………………………………………10 一、菌種來源……………………………………………………………………………………………10 二、培養基………………………………………………………………………………………………10 三、菌種保存……………………………………………………………………………………………11 四、菌種培養與分裂酵母菌懸浮液之製備……………………………………………………………11 五、分裂酵母菌之固定…………………………………………………………………………………12 六、活化方法……………………………………………………………………………………………14 七、醱酵方法……………………………………………………………………………………………14 八、分裂酵母菌濃度之測定……………………………………………………………………………16 九、分析方法……………………………………………………………………………………………17 十、掃描式電子顯微鏡之觀察…………………………………………………………………………21 十一、實驗試藥…………………………………………………………………………………………22 結果…………………………………………………………………………………………………………23 一、菌種篩選……………………………………………………………………………………………23 二、各種活化方法之比較………………………………………………………………………………23 三、各種固定方法之比較………………………………………………………………………………27 四、擔體濃度對蘋果酸酒精醱酵之影響………………………………………………………………27 五、接種量對醱酵之影響………………………………………………………………………………30 六、膠體添加量對蘋果酸酒精醱酵之影響……………………………………………………………30 七、固定與未固定之分裂酵母菌醱酵能力之比較……………………………………………………33 八、固定化分裂酵母菌之蘋果酸酒精醱酵……………………………………………………………33 九、溫度對醱酵之影響…………………………………………………………………………………39 十、培養基之起始pH值對醱酵之影響…………………………………………………………………44 十一、硫酸鎂添加對醱酵之影響………………………………………………………………………44 十二、添加微量元素對醱酵之影響……………………………………………………………………44 十三、固定化分裂酵母菌在葡萄汁中醱酵之情形……………………………………………………47 十四、酒精濃度對醱酵之影響…………………………………………………………………………47 十五、固定化分裂酵母菌在白葡萄酒中醱酵之情形…………………………………………………51 十六、固定化分裂酵母菌之電子顯微鏡觀察…………………………………………………………54 十七、連續式醱酵………………………………………………………………………………………54 討論…………………………………………………………………………………………………………57 參考文獻……………………………………………………………………………………………………63 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用固定化分裂酵母菌進行蘋果酸酒精醱酵 | zh_TW |
| dc.title | THE MALO-ALCOHOLIC FERMENTATION BY Schizosaccharomyces pombe TMB 1138 | en |
| dc.date.schoolyear | 74-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 66 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
