請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | You-Di Liao | en |
| dc.contributor.author | 廖有地 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:13:45Z | - |
| dc.date.available | 2021-07-01T08:13:45Z | - |
| dc.date.issued | 1985 | |
| dc.identifier.citation | 1. Adams, R. L. P., R. H. Burdon, A. M. Campbell, D. P. Leader and R. M. S. Smellie, 1981. in The Biochemistry of the Nucleic Acid'81, pp.290-291. Chapman and Hall. London and New York.
2. Alberts, B. M., F. J. Amodio, M. Jenkins, E. D. Gutmann and F. L. Ferris, 1968. Studies with DNA-cellulose chromatography, I. DNA-binding proteins from E. coli, Cold Spring Harbor Symp. Quant. Biol. 33:289-305. 3. Amemiya, K., B. Raboy and L. Shapiro, 1980. Involvement of the host RNA polymerase in the early transcription program of Caulobacter crescentus bacteriophage φCdl DNA, Virology 104:109-116. 4. Bernardi, G., 1971. Chromatography of proteins on hydroxyapatite, in Methods in Enzymology (Jakoby, W. B., ed.). vol. 22, pp. 325-339. Academic Press. New York and London. 5. Brunovskis, I. and W. C. Summers, 1971. The process of infection with coliphage T7:Shutoff of host RNA syntheis by an early phage function. Virology 45:224-231. 6. Burgess, R. R. and J. J. Jendrisak, 1975. A procedure for the rapid, largescale purification of E. coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA-cellulose chromatography. Biochemistry 14:4634-4638. 7. Butler, E. T. and M. J. Chamberlin, 1982. Bacteriophage SP6-specific RNA polymerase, I. Isolation and characterization of the enzyme. J. Biol. Chem. 257:5772-5778. 8. Chakraborty, P. R., P. Sarkar, H. H. Huang and U. Maitra, 1973. Studies on T3-induced RNA polymerase, III. Purification and characterization on T3-induced RNA polymerase from bacteriophage T3-infected E. coli cells. J. Biol. Chem. 248:6637-6646. 9. Chamberlin, M. and J. Ring, 1973. Characterization of T7-specific RNA polymerase, I. General properties of the enzymatic reaction and the template specificity of the enzyme. J. Biol. Chem. 248:2235-2244. 10. Chamberlin, M. and J. Ring, 1973. Characterization of T7-specific RNA polymerase, II. Inhibitor of the enzyme and their application to the study of the enzymatic reaction. J. Biol. Chem. 248:2245-2250. 11. Chamberlin, M. and P. Berg, 1964. Mechanism of RNA polymerase action: Characterization of the DNA-dependent synthesis of polyadenylic acid. J. Mol. Biol. 8:708-726. 12. Chamberlin, M. J., 1982. Bacterial DNA-dependent RNA polymerases. in The Enzymes'82 (Boyer, P. D. ed.) vol. 15, pp. 61-86. Academic Press. New York and London. 13. Clark, S., 1978. Transcriptional specificity of a multisubunit RNA polymerase induced by Bacillus subtilis bacteriophage PBS-2. J. Virol. 25:224-237. 14. Clark, S., R. Losick and J. Pero, 1974. New RNA polymerase from Bacillus subtilis infected with phage PBS-2. Nature 252:21-24. 15. Cudny, H., R. Zaniewski and M. P. Deutscher, 1981. Escherichia coli RNase D. J. Biol. Chem. 256:5627-5632. 16. Dai, H., K. S. Chiang and T. T. Kuo, 1980. Characterization of a new filamentous phage cf from Xanthomonas citri. J. Gen. Virol. 46:277-289. 17. Davison, B. L., T. Leighton and J. C. Rabinowitz, 1979. Purification of Bacillus subtilis RNA polymerase with heparin-agarose. J. Biol. Chem. 254:9220-9226. 18. DeWyngaert, M. A. and D. C. Hinkle, 1979. Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA. J. Virol. 29:529-535. 19. DeWyngaert, M. A. and D. C. Hinkle, 1979. Bacterial mutants affecting phage T7 DNA replication produce RNA polymerase resistant to inhibition by T7 gene 2 protein. J. Biol. Chem. 254:11247-11253. 20. Dunn, J. J. and F. W. Studier, 1973. T7 early RNAs are generated by site specific cleavage Proc. Natl. Acad. Sci. USA. 70:1559-1563. 20. Dunn, J. J. and R. W. Studier, 1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166:477-535. 21. Falco, S. C., R. Zivin and L. B. Rothman-Denes, 1978. Novel template requirement of N4 virion RNA polymerase Proc. Natl. Acad. Sci. USA. 75:3220-3224. 22. Falco, S. C., K. V. Laan and L. B. Rothman-Denes, 1977. Virion-associated RNA polymerase required for bacteriophage N4 development. Proc. Natl. Acad. Sci. USA. 74:520-523. 23. Fox, C. F., R. I. Gumport and S. B. Weiss, 1965. The enzymatic synthesis of RNA, J. Biol. Chem. 240:2101-2109. 24. Freifelder, D., 1983. in Molecular Biology: A comprehensive introduction to prokaryotes and eukaryotes. pp. 640-645. Science Books International. Boston. 25. Freifelder, D., 1983. in Molecular Biology: A Comprehensive introduction to prokaryotes and eukaryotes. pp. 618-620. Science Books International. Boston. 26. Freifelder, D., 1983. in Molecular Biology: A comprehensive introduction to prokaryotes and eukaryotes. pp. 545-547. Science Books International. Boston. 27. Goldberg, I. H. and P. L. Friedman, 1971. Antibiotics and nuclic acid. Annu. Rev. Biochem. 40:775-810. 28. Goldfarb, A., 1980. Organization and expression of transfer RNA gene cluster in bacteriophage T4. Ph. D. thesis, Scientic Council of the Weizmann Institute of Science, Rehovot, Israel. 29. Golomb, M. and M. Chamberlin, 1974. A primary map of the major transcription units read by T7 RNA polymerase on the T7 and T3 bacteriophage chromosome. Proc. Natl. Acad. Sci. USA. 71:760-764. 30. Gross, G., F. Engbaek, T. Flammang and R. Burgess, 1976. Rapid micromethod for the purification of E. coli RNA polymerase and the preparation of bacterial extracts active in RNA synthesis. J. Bacteriol. 128: 382-389. 31. Hammond, C. I. and M. J. Holland, 1983. Purification of yeast RNA polymerase using heparin agarose affinity chromatography. J. Biol. Chem. 258:3230-3241. 32. Hesselbach, B. A. and D. Nakada, 1975. Inactive complex formation between E. coliRNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258:354-357. 33. Hesselbach, B. A. and D. Nakada, 1977. Host shutoff function of bacteriophage T7: Involvement of T7 gene 2 and gene 0.7 in the inactivation of E. coli RNA polymerase J. Virol. 24:736-745. 34. Hesselbach, B. A. and D. Nakada, 1977. I protein: Bacteriophage T7-coded inhibitor of E. coli RNA polymerase. J. Virol. 24:746-760. 35. Hesselbach, B. A., Y. Yamada and D. Nakada, 1974. Isolation of an inhibitor protein of E. coli RNA polymerase from T7 phage infected cell. Nature 252: 71-74. 36. Himmelhoch, S. R., 1971. Chromatography of proteins on ion exchange absorbents, in Methods in Enzymology (Jakoby, W. B. ed.), vol. 22, pp. 273-286. Academic Press. New York and London. 37. Huang, L. H., T. T. Kuo and Y. D. Liao, 1979. RNA polymerase from a phytopathogenic bacterium Xanthomonas oryzae. J. Chin. Bio. Chem. Soc. 8:107-121. 38. Jackson, P., 1982. Notes on DNA purification of phage DNA, Focus 4(2):12, Bethesda Research Laboratories, Gaithersburg, Maryland. 39. Jendrisak, J. J. and R. R. Burgess, 1975. A new method for the largescale purification of wheat germ DNA-dependent RNA polymerase Ⅱ, Biochemistry 14:4639-4645. 40. Jolly, J. F., 1979. Program of bacteriophage gh-1 DNA transcription in infected Pseudomonas putida. J. Virol. 30:771-776. 41. Kassavetis, G. A., E. T. Bulter, D. Roulland and M. J. Chamberlin, 1982. Bacteriophage SP6-specific RNA polymerase, Ⅱ. Mapping of SP6 DNA and selective in vitro transcription. J. Biol. Chem. 257:5779-5788. 42. Krakow, J. S., 1966. Azotobacter vinelandii RNA polymerase. J. Biol. Chem. 241:1830-1834. 43. Krakow, J. S. and K. von der Helm, 1970. Azotobacter RNA polymerase transition and the release of sigma. Cold Spring Harbor Symp. Quant. Biol. 35:73-83. 44. Krakow, J. S. and M. Karstadt, 1967. Azotobacter vinelandii RNA polymerase, Ⅳ. Unprimed synthesis of RIC copolymer. Proc. Natl. Acad. Sci. USA. 58:2094-2101. 45. Krieg, P. A. and D. A. Melton, 1984. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nuc. Acid Res. 12:7057-7070. 46. Kuo, T. T., T. C. Huang and M. H. Teng, 1968. 5-Methylcytosine replacing cytosine in DNA of a phage of Xanthomonas oryzae. J. Mol. Biol. 34:373-375. 47. Kuo, T. T., T. C. Huang, R. Y. Wu and C. M. Yang, 1967. Characterization of three bacteriophage of Xanthomonas oryzae. Bot. Bulle. Acad. Sin. 8:246-254. 48. Lewis, M. K. and R. R. Burgess, 1982. Eukaryotic RNA polymerases. in The Enzymes'82 (Boyer, P. D. ed.). vol. 15, pp. 110-153. Academic Press. New York and London. 49. Laemmli, U. K., 1979. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680-685. 50. Litman, R. M. 1968. A DNA polymerase from Micrococcus luteus isolated on DNA-cellulose*. J. Biol. Chem. 243: 6222-6233. 51. Lowe, C. R., 1979. in An introduction to affinity chromatography. pp. 344-357. Elsevier/North-Holland Biomedical Press. Netherlands. 52. Maniatis, T., E. F. Fritsch and J. Sambrook, 1982. in Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York. 53. Mahler, H. R., B. D. Mehrotra and C. W. Sharp, 1961. Effects of diamines on the thermal transition of DNA. Biochem. Biophys. Res. Communs. 4:79-82. 54. Melton, D. A., P. A. Krieg, M. R. Rebagliati, T. Maniatis, K. Zinn and M. R. Green, 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promotor. Nuc. Acid Res. 12:7035-7056. 55. Merril, C.R., D. Goklman and H. L. Keuren, 1984. Gel protein stains: Silver stain, in Methods in Enzymology (Jakoby, W. B. ed.). vol. 104, pp. 441-447. Academic Press. New York and London. 56. Notani, G. W., 1973. Regulation of bacteriophage T4 gene expression. J. Mol. Biol. 73:231-249. 57. Peacock, A. C. and C. W. Dingman, 1968. Molecular weight estimation and separation of RNA by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 7:668-674. 58. Pierce, J. and C. Suelter, 1977. An evaluation of the coomssie brilliant blue G-250 dye binding method for quantitative protein determination. Anal. Biochem. 81:478. 59. Rahmsdorf, H. J., S. H. Pai, H. Ponta, P. Herrlich, R. Roskoski, Jr., M. Schweiger and F. W. Studier, 1974. Protein kinase induction in E. coli by bacteriophage T7. Proc. Natl. Acad. Sci. USA. 71:586-589. 60. Reiland J., 1971. Gel filtration in Methods in Enzymology (Jakoby, W. B. ed.), vol. 22, pp. 287-321. Academic Press. New York and London. 61. Rothman-Denes, L. B., R. Haselkorn and G. C. Schito, 1972. Selective shutoff of catabolite-sensitive host synthesis by bacteriophage N4. Virology 50:95-102. 62. Ryan, L. D. and C. S. Vesting, 1974. Rapid purification of lactate dehydrogenase from rat liver and hepatoma: A New approach. Archi. Biochem. Biophys. 160:279-284. 63. Saenger, W., 1984. in Principle of Nucleic Acid Structure. pp. 331-349. Springer-Verlag, New York. 64. Salvo, R. A., P. R. Chakraborty and U. Maitra, 1973. Studies on T3-induced RNA polymerase, IV. Transcription of denatured DNA preparation by T3 RNA polymerase. J. Biol. Chem. 248:6647-6654. 65. Sarachu, A. N., J. C. Alonso and O. Grau, 1980. Novobiocin blocks the shutoff of SPO1 early transcription. Virology 105:13-18. 66. Schaller, H., C. Niisslein, F. J. Bonhoeffer, C. Kurz and I. Nietzschmann, 1972. Affinity chromatography of DNA-binding enzymes on single-stranded DNA-agarose columns. Eur. J. Biochem. 26:474-481. 67. Stevens, A., 1964. Studies of the RNA polymerase from E. coli, II. Studies of homopolymer formation. J. Biol. Chem. 239:204-209. 68. Steck, T. R. and K. Drlica, 1985. Involvement of DNA gyrase in bacteriophage T7 growth. J. Virol. 53:296-298. 69. Studier, F. W., 1973. Analysis of bacteriophage T7 early RNA and proteins on slab gel. J. Mol. Biol.. 79:237-248. 70. Summers, W. C. and R. B. Siegel, 1970. Transcription of late phage RNA by T7 RNA polymerase, Nature 228: 1160-1162. 71. Tabor, H., 1962, The protective effect of spermine and other polyamines against heat denaturation of DNA. Biochemistry 1:496-500. 72. Thompson, S. T. and E. Stellwagen, 1976. Binding of cibacron blue F3GA to proteins containing the dinucleotide fold. Proc. Natl. Acad. Sci. USA. 73:361-365. 73. Thompson, S. T., K. H. Cass and E. Stellwagen, 1975. Blue dextran-sepharose: An affinity column for the dinucleotide fold in proteins. Proc. Natl. Acad. Sci. USA. 72:669-672. 74. Towle, H. C., J. F. Jolly and J. A. Boezi, 1975. Purification and characterization of bacteriophage gh-1-induced DNA-dependent RNA polymerase from Pseudomonas putida. J. Biol. Chem. 250:1723-1733. 75. Tseng, B. Y. and C. N. Ahlem, 1983. A DNA primase from mouse cells. J. Biol. Chem. 258:9845-9849. 76. Windholz, M., 1983, The Merck Index: An encyclopedia of chemicals, drugs and biologicals. Merck & Co. Inc. Rahway, N. J. USA. 77. Yamaguchi, M., K. Tanabe, Y. N. Taguchi, M. Nishizawa, T. Takahashi and A. Matsukage, 1980. Chick embryo DNA polymerase β. J. Biol. Chem. 255:9942-9948. 78. Yamamoto, K. R. and B. M. Alberts, 1970. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to largescale virus purification. Virology 40:734-744. 79. Yang, M. K. and T. T. Kuo, 1984. A physical map of the filamentous bacteriophage cf genome. J. Gen. Virol. 65:1173-1181. 80. Zillig, W., H. Fujiki, W. Blum, D. Janekovic, M. Schweiger, H. J. Rahmsdorf, H. Ponta and M. Hirsch-Kauffmann, 1975. in vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of E. coli by bacteriophage T7 induced protein kinase. Proc. Natl. Acad. Sci. USA. 72:2506-2510. 81. Zehring, W. A. and L. B. Rothman-Denes, 1983. Purification and characterization of coliphage N4 RNA polymerase II activity from infected cell extracts. J. Biol. Chem. 258:8074-8080. 82. Gene Screen hybridization transfer membrane: Instruction manual, 1983. New England Nuclear, Boston, USA. 83.分子生物學:理論及運用,中華民國七十一年暑期研習會講義,教育部、國科會、農發會、國立臺灣大學醫學院、國立陽明醫學院合辦。 u:本實驗室未發表之資料。 83.分子生物學:理論及運用,中華民國七十一年暑期研習會講義,教育部、國科會、農發會、國立臺灣大學醫學院、國立陽明醫學院合辦。 u:本實驗室未發表之資料。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75538 | - |
| dc.description.abstract | Xp10?水稻白葉枯病病原菌Xanthomonas campestris pv. oryzae之溶解性噬菌體,當Xp10感染寄主細菌後,菌體內之轉錄系統由對rifampicin敏感轉變?對rifampicin有抗性,經酵素分析後,發現寄主原本對rifampicin敏感的RNA聚合?活性,因Xp10的感染而下降,接著又產生一抗rifampicin的RNA聚合?,取代寄主的RNA聚合?。 ?了探討寄主RNA聚合?對Xp10基因體轉錄的情形及其活性如何因Xp10感染而下降,因此分別以PEG沈澱法、DEAE-cellulose, heparin sepharose 4B及blue dextran sepharose 4B等層析法將感染前、後之寄主RNA聚合?加以純化,經7.5% SDS-polyacrylamide膠體電泳分析,發現寄主RNA聚合?次單位中α2ββ'σ中的σ次單位因Xp10感染而遺失;同時感染後之寄主RNA聚合?的模版專一性也因而改變,未感染者可利用Xp10 DNA及寄主DNA?模版合成RNA,而感染後者則不能轉錄Xp10 DNA及寄主DNA,僅能轉錄poly d(A-T)。接著再比較其差異性,譬如對於spermidine的促進作用,actinomycin D及blue dextran之抑制作用亦有所差異,其他特性如RNA合成之最適二價陽離子濃度、最適溫度、最適pH?及對於鹽類、NEM、rifampicin、congo red、heparin、ethidium bromide之抑制作用並沒有顯著改變;以polyacrylamide-agarose混合膠體電泳分析兩種RNA聚合?對Xp10 DNA之轉錄產物,得知感染前之寄主RNA聚合?可得到五條主要的RNA帶,而感染後之寄主RNA聚合?僅得到較弱的兩條RNA帶,?了繼續追蹤這兩種酵素對Xp10 DNA轉錄的專一性是否改變,因此分別以其轉錄Xp10 DNA所得之32P-RNA?偵測體(probe),對Xp10 DNA片斷進行DNA-RNA雜交試驗,發現兩者均只能轉錄Xp10 DNA左端25?30%部份。接著以從Xp10感染菌體中分離出的Xp10抑制因數,對感染前之寄主RNA聚合?作用,發現可抑制其對Xp10 DNA及寄主DNA之轉錄,而與感染後之寄主RNA聚合?特性相似。但是此抑制因數不改變感染後寄主RNA聚合?對Xp10 DNA及寄主DNA之轉錄能力。 Xp10感染後,除了寄主RNA聚合?被抑制外,又產生一Xp10 RNA聚合?負責轉錄Xp10晚期基因;同樣以上述純化步驟加以純化,經7.5% SDS膠體電泳分析後,得知它?分子量98,000之單一蛋白質RNA聚合?,嗜好以加熱處理過之Xp10 DNA、calf thymusDNA及poly d(A-T)?模版合成RNA,對自然、雙股(native, double strand)的DNA及poly d(C)•poly d (G)之轉錄能力則較差,但只合成poly r(G),不合成poly r(C)。若以加熱處理之calf thymus DNA?模版,受質ATP單獨存在時,可合成poly r(A)。正常之轉錄作用須有四種受質、DNA模版及鎂離子同時存在;RNA合成之最適鎂離子濃度?16 mM,最適溫度?37℃,最適pH??8.0,受質ATP之Km??26μm,spermidine可抑制其酵素活性,50mM的KCl可抑制其90%的酵素活性。60μg/ml的actinomycin D, heparin, blue dextran, ethidium bromide可完全抑制其活性,而對同一濃度的rifampicin及streptovaricin具有抗性。其酵素活性部位(active site)不具-SH基。Xp10 RNA聚合?轉錄Xp10 DNA之RNA產物,經polyacrylamide-agarose混合膠體分析後,得到兩條主要的RNA帶,再以此32P-RNA?偵測體,對Xp10 DNA片斷做DNA-RNA雜交分析,得知Xp10 RNA聚合?僅轉錄Xp10 DNA右端70?75%部份。 ?了驗證在生體內(in vivo) Xp10基因體轉錄的方向,是否亦由Xp10 DNA物理圖譜左端進行,因此分別抽取Xp10感染後不同時間菌體內之32P-RNA,再依上法做雜交試驗,結果證明仍由左端向右端的方向轉錄。 由以上結果歸納如下:Xp10感染寄主細菌後,寄主RNA聚合?負責轉錄Xp10早期基因,再由早期基因產物-Xp10抑制因數抑制寄主RNA聚合?活性,再以另一早期基因產物-Xp10 RNA聚合?負責轉錄Xp10晚期基因。 | zh_TW |
| dc.description.abstract | Xp10 is a virulent phage of Xanthomonas campestris pv. onyzae. When the host bacteria were infected with Xp10, the activity of rifampicin sensitive transcription, originally presents in the host, was dramatically decreased, meanwhile the rifampicin resistant transcription was induced. Both the RNA polymerases from uninfected and infected cells were purified to homogeneity by PEG precipitation, DEAE-cellulose, heparin sepharose 4B and blue dextran sepharose 4B chromatography. Properties of these two enzymes were compared. When the protein subunits of both enzymes were analyzed by 7.5% SDS-polyacrylamide gel electrophoresis, the losing of σ subunit from the infected host RNA polymerase was observed. In the in vitro assay systems, the infected-host RNA polymerase was unable to transcribe native DNA efficiently, while the uninfected-host RNA polymerase was able to transcribe native DNA. The optimal concentration of divalent cation, temperature and pH for both enzyme activities were very similar. The effects of salts and some reagents, such as rifampicin, congo red, heparin, N-ethylmaleimide, ethidium bromide on both enzymes were also similar. There were some differences between the effects of spermidine, actinomycin D and blue dextran. The transcriptional products of both enzymes upon Xp10 DNA were analyzed by polyacrylamide-agarose composite gel electrophoresis and autoradiography. Five major radioactive RNA bands were visualized in the products of uninfected-host RNA polymerase and two major radioactive RNA bands were visualized in the products of infected-host RNA polymerase. The transcribed regions on Xp10 DNA by both enzymes were analyzed by DNA-RNA hybridization, both enzymes could only transcribe leftmost 25-30% of the total Xp10 genome, although the transcriptional efficiency of infected-host RNA polymerase was less than that of uninfected-host RNA polymerase. An inhibitor, which is protein in nature, had been isolated from Xp10 infected cells. It could inhibit the transcription of uninfected-host RNA polymerase upon native DNA, but not upon poly d(A-T). The Xp10 induced RNA polymerase was also purified to homogeneity by PEG preciptation, DEAE-cellulose, heparin sepharose 4B and blue dextran sepharose 4B chromatography. It possesses a single polypeptide chain with a molecular weight of 98,000. The enzyme preferred denatured Xp10 DNA, calf thymus DNA and poly d(A-T) as templates for in vitro RNA synthesis. The optimal concentration of divalent cation (16mM), temperature(37℃) and pH(8.0) for RNA synthesis were determined. 90% of the enzyme activity was inhibited by the presence of 0.05 M KC1. The enzyme activity was inhibited by spermidine which could enhance the activity of host RNA polymerase. The four substrates (ATP, CTP, GTP, UTP,) were essential for RNA synthesis. The Km of ATP was 26μM. Poly r(A) could be formed when denatured calf thymus DNA was used as a template in the absence of CTP, GTP and UTP. The enzyme activity did not alter by the presence of N-ethylmaleimide, it suggested that -SH group was not required for the active site of Xp10 RNA polymerase. The enzyme activity was blocked by actinomycin D, heparin, blue dextran, ethidium bromide, but it was resistant to rifampicin and streptovaricin. The in vitro transcriptional products of Xp10 DNA by using Xp10-induced RNA polymerase were analyzed by polyacrylamide-agarose composite gel electrophoresis and autoradiograph. Two major radioactive RNA bands were visualized. The transcribed regions on Xp10 DNA were also analyzed by DNA-RNA hybridization. It was found that Xp10-induced RNA polymerase could only transcribe the rightmost 70-75% of the total Xp10 genome. The results of in vivo transcriptional experiments show that the Xp10 genome was transcribed in the same direction as in vitro. It was concluded that Xp10 early gene were firstly transcribed by host RNA polymerase. Among the early gene products, one is an inhibitor inhibiting the host RNA polymerase, and the other is a new RNA polymerase taking responsibility of the transcription of Xp10 late genes. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:45Z (GMT). No. of bitstreams: 0 Previous issue date: 1985 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………………………………………i 英文摘要……………………………………………………………………………………………………………iv 簡寫字對照表………………………………………………………………………………………………………viii 壹、緒言……………………………………………………………………………………………………………1 貳、材料和方法……………………………………………………………………………………………………8 一、材料…………………………………………………………………………………………………………8 (一)生物材料………………………………………………………………………………………………8 (二)藥品與酵素……………………………………………………………………………………………8 (三)培養基…………………………………………………………………………………………………10 (四)緩衝液…………………………………………………………………………………………………11 二、方法…………………………………………………………………………………………………………13 (一)細菌與噬菌體之培養…………………………………………………………………………………13 (二)細菌與噬菌體DNA之純化………………………………………………………………………………14 (三)菌體之製備……………………………………………………………………………………………16 (四)RNA聚合?之萃取………………………………………………………………………………………17 (五)Xp10之抑制因數………………………………………………………………………………………18 (六)RNA聚合?活性之測定 ………………………………………………………………………………18 (七)蛋白質、核酸、KCl濃度之測定 ……………………………………………………………………19 (八)管柱色層分析之製備…………………………………………………………………………………20 (九)凝膠電泳法,分析RNA聚合?之蛋白質 ……………………………………………………………23 (十)凝膠—洋菜膠混合膠體電泳法,分析RNA產物 ……………………………………………………27 (十一)洋菜膠電泳法,分析Xp10 DNA……………………………………………………………………30 (十二)Southern blotting及DNA-RNA hybridization…………………………………………………32 (十三)生體內(in vivo) 32P-RNA之抽取 ………………………………………………………………35 (十四)照像、暗房技術及放射顯影追蹤術………………………………………………………………36 三、結果……………………………………………………………………………………………………………39 一、噬菌體Xp10感染後,細菌體內轉錄系統的變化…………………………………………………………39 (一)在生體(in vivo)層次上的變化………………………………………………………………………39 (二)在酵素層次上的分析…………………………………………………………………………………39 二、噬菌體Xp10感染後,寄主轉錄系統的關閉………………………………………………………………41 (一)寄主RNA聚合?的變化…………………………………………………………………………………41 1.酵素的純化 ………………………………………………………………………………………41 (1) 未感染寄主RNA聚合?的純化 ………………………………………………………………41 (2) 感染後寄主RNA聚合?的純化 ………………………………………………………………46 2.感染前、後,寄主RNA聚合?的比較……………………………………………………………49 (1) 一般性質………………………………………………………………………………………52 (2) 蛋白質次單位…………………………………………………………………………………58 (3) RNA產物 ………………………………………………………………………………………64 (4) 在Xp10 DNA上轉錄的位置……………………………………………………………………68 (二)Xp10所誘導的寄主RNA聚合?抑制因數 ……………………………………………………………74 1.對寄主RNA聚合?模版專一性的改變……………………………………………………………74 2.對寄主RNA聚合?蛋白質次單位的改變…………………………………………………………74 三、噬菌體Xp10感染後,誘導新的轉錄系統…………………………………………………………………76 (一)Xp10 RNA聚合?的純化………………………………………………………………………………76 (二)蛋白質次單位…………………………………………………………………………………………78 (三)一般性質………………………………………………………………………………………………82 (四)RNA 產物………………………………………………………………………………………………94 (五)在Xp10 DNA上轉錄的位置……………………………………………………………………………100 四、噬菌體Xp10感染後,Xp10基因體轉錄的方向……………………………………………………………103 (一)生體外(in vitro)轉錄的分析………………………………………………………………………103 (二)生體內(in vivo)轉錄的分析 ………………………………………………………………………103 肆、討論……………………………………………………………………………………………………………112 一、Xp10感染後,寄主轉錄系統關閉的機制…………………………………………………………………112 二、Xp10感染後,誘導新的RNA聚合?取代寄主RNA聚合?以轉錄Xp10晚期的基因………………………115 三、Xp10 RNA聚合?特性的探討………………………………………………………………………………117 (一)模版專一性……………………………………………………………………………………………117 (二)poly r(A) 之形成……………………………………………………………………………………122 (三)spermidine之抑制作用………………………………………………………………………………123 (四)酵素活性部位不具—SH基……………………………………………………………………………124 四、Xp10基因體在生體內及生體外之轉錄方向………………………………………………………………124 五、化學抑制劑對Xp10 RNA聚合?作用的機制………………………………………………………………126 六、鎂離子對Xp10 RNA聚合?的影響…………………………………………………………………………130 七、酵素純化技術的改良………………………………………………………………………………………133 八、未來研究方向………………………………………………………………………………………………135 伍、參考文獻………………………………………………………………………………………………………140 | |
| dc.language.iso | zh-TW | |
| dc.title | 噬菌體Xp10基因轉錄的控制 | zh_TW |
| dc.title | Control of Gene Transcription in Phage Xp10 Infected Cells | en |
| dc.date.schoolyear | 73-2 | |
| dc.description.degree | 博士 | |
| dc.relation.page | 152 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
