Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author陳靜媛zh_TW
dc.date.accessioned2021-07-01T08:13:15Z-
dc.date.available2021-07-01T08:13:15Z-
dc.date.issued1982
dc.identifier.citation1. Ackerson, R. C., R. R. Hebert. 1981. Osmoregulation in cotton in response to water stress. I. Alterations in photosynthesis, leaf conductance, translocation and ultrastructure. Plant Physiol. 67: 484-488.
2. Ashburner, M. and J. J. Bonner. 1979. The induction of gene activity in Drosophila by heat shock. Cell 17: 241-254.
3. Barlow, E. W. R., T. M. Ching and L. Boersma. 1976 Leaf growth in relation to ATP level in water stressed corn plants. Crop Sci. 16: 405-407.
4. Boggess, S. F., C. R. Stewart, D. Aspinall and L. G. Paleg. 1976. Effect of water stress on proline synthesis from radioactive precursors. Plant Physiol. 58: 398-401.
5. Boyer, P. D. 1970-1974. The Enzymes, 3d ed., Vols 7-9, Academic, New York, pp. 342-488.
6. Burton, K. 1968. Determination of DNA concentration with diphenylamine. Methods Enzymol. 12B: 165-166.
7. Cutler, J. M. and D. W. Rains. 1978. Effects of water stress and hardening on the internal water relations and osmotic constituents of cotton leaves. Physiol. Plant. 42: 261-268.
8. Dhindsa, R. S. and J. D. Bewley. 1976. Plant desiccation: polysome loss not due to ribonuclease. Science 191: 181-182.
9. Guttman, S. D., Glover, C. V. C., Allis, C. D. and M. A. Gorovsky. 1980. Heat shock, decilliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell 22: 299-307;
10. Hanson, A. D. & C. E. Nelsen. 1978. Betain accumulation and [14CJ formate metabolism in water-stressed barley leaves. Plant Physiol. 62: 305-312.
11. Hanson, A. D. and R. E. Tully. 1979. Light stimulation of proline synthesis in water??stressed barley leaves. Planta 145: 45-51.
12. Hirata, F. and J. A. Axeired. 1980. Phospholipid methylation and biological signal transmission. Science 209: 1082-1090.
13. Hitz, W. D., D. Rhodes, and A. D. Hanson. 1981. Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betain synthesis by water stressed barley leaves. Plant Physiol. 68: 814-822.
14. Hoddinott, J., D. L. Ehret and P. R. Gorham. 1979. Rapid influences of water stress on photosynthesis and translocation in Phaseolus vulgaris L. Can. J. Bot. 57: 768-776.
15. Howell, S. H. 1973. The isolation and analysis of DNA from eukaryotic cells. In: Molecular Techniques and Approaches in Developmental Biology (ed. by M. J. Chrispeels) pp. 117-139.
16. Hsiao, T. C. 1970. Rapid changes in levels of polyribosomes in Zea mays in Response to water stress. Plant Physiol. 46: 281-285.
17. Ingle, J. and J. L. Key. 1965. A comparative evaluation of the synthesis of DNA-like DNA in excised and intact plant tissues. Plant Physiol. 40: 1212-1219.
18. Keeley, P. M., G. Aliperti and M. J. Schlesinger. 1980. In vitro synthesis of heat-shock protein by mRNAs from chicken embryo fibroblasts. J. Biol. Chem. 255: 3230-3233.
19. Kelley, P. M. and M. J. Schiosinger. 1978. The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell 15: 1277-1286.
20. Key, J. L., C. Y. Lin and Y. M. Chen. 1981. Heat shock proteins of higher plants. Proc. Natl. Acad. Sci. USA 78(6): 3526-3530.
21. Koch, K and R. A. Kennedy. 1980. Characteristics of crassulacean acid metabolism in the succulent C4 dicot. Portulaca oleracea L. Plant Physiol. 65: 193-197.
22. Laemmli, U. K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
23. Lin, C. Y. and J. L. Key. 1967. Dissociation and reassembly of polyribosomes in relation to protein synthesis in soybean root. J. Mol. Biol. 26: 237-247.
24. Lin, C. Y. and J. L. Key. 1971. Dissociation of N2 gas-induced monomeric ribosomes and functioning of the derived subunits in proteins synthesis in pea. Plant Physiol. 48: 547-552.
25. Lin, C. Y. and T. J. Guilfoyle, Y. M. Chen and T. L. Key. 1975. Isolation of nucleoli and localization of ribonucleic acid polymerase I from soybean hypocotyl. Plant Physiol. 56: 850-852.
26. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 192: 265-275.
27. McKenzie, S. L., S. Henikoff and M. Meselson. 1975. Localization of RNA from heat-induced poly-somes at puff sites in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 72: 1117-1121.
28. Michel, B. E. and M. R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51: 914-916.
29. Miller, M. J., N. H. Xuong and E. P. Geiduschek. 1979. A response of protein synthesis to temp. shift in the yeast. Proc. Natl. Acad. Sci. USA 76(10): 5222-5225.
30. Morilla, C. A., J. S. Boyer and R. H. Hageman. 1973. Nitrate reductase. activity and polyribosomal content of corn having low leaf water potential. Plant Physiol. 51: 817-824.
31. Nir, I., A. Poljakoff-Mayber and S. Klein. 1970. The effect of water stress on mitochondria of root cells: A biochemical and cytochemical study. Plant Physiol. 45: 173-177.
32. Plaut, Z. 1971. Inhibition of photosynthetic carbon dioxide fixation in isolated spinach chloroplasts exposed to reduced osmotic potentials. Plant Physiol. 48: 591-595.
33. Premecz, G., P. Ruzicska, T. Olah and G. L. Farkas. 1978. Effect of “osmotic stress” on protein and nucleic acid synthesis in isolated tobacco protoplasts. Planta 141: 33-36.
34. Sachs, M. M., M. Freeling and R. Okimoto. 1980. The anaerobic protein of maize. Cell 20: 761-767.
35. Stern, H. 1968. Isolation and purification of plant nucleic acids from whole tissues and from isolated nuclei. Methods Enzymol. 12B: 100-112.
36. Stewart, C. R. 1973. The effect of wilting on proline metabolism in excised bean leaves in the dark. Plant Physiol. 51: 508-511.
37. Sung F. J. M. and D. R. Krieg. 1979. Relative sensitivity of photosynthetic assimilation and translocation of 14Carbon to water stress. Plant Physiol. 64: 852-856.
38. Velazquez, J. M., B. J. Didomenico and S. Lindquist. 1980. Intracellular localization of heat shock protein in Drosophila. Cell 20: 679-689.
39. Zurfluh, L. L. and T.J. Gui1foyle. 1980. Auxin-induced changes in the patterns of protein synthesis in soybean hypocotyl. Proc. Natl. Acad. Sci. USA 77: 357-361.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75448-
dc.description.abstract用Polyethylenegiycol(PEG)調配成不同滲透勢的緩衝液(28),以滴降法測定緩衝液的滲透勢為-5.4bars時,相當大豆白化幼苗(生長二天,約6.5cm長)的等張溶液,若滲透勢比-5.4bars小時,大豆白化幼苗就開始缺水了。
大豆白化幼苗一旦處於缺水環境下,會引起生長停頓,觀察其蛋白質合成的機制,有快速與劇烈的改變:(1)細胞核內RNA合成的酵素—核糖核酸聚合?Ⅰ及Ⅱ的活性降低;(2)合成蛋白質的所在—多核糖體轉變成單核糖體(3)以3H-leucine標示蛋白質的合成,發現缺水還不太嚴重時(-6.75bars)攝入蛋白質的量只有輕微抑制的現象,低於-6.75bars時,則其攝入量會隨著滲透勢的降低而顯著降低。由以上可證明正常蛋白質合成速率,在缺水狀況下會顯著下降。
若缺水在-8bars時,再給予正常供水,核糖核酸聚合?Ⅰ及Ⅱ活性?升,多核糖體合量也會增高,3H-leucin的攝入量在6小時後亦可見?升,即蛋白質的正常合成功能可?復,也就是說在凋萎點之內缺水對大豆白化幼苗的效應是可逆的。
抽取缺水的大豆白化幼苗之全蛋白質,經SDS/12.5%Polyacrylamide膠體電泳分析和放射顯影術,發現在膠體上之全蛋白質的類型,沒有改變,即看不出有特殊新蛋白質的合成,可能大豆白化幼苗對缺水的效應與熱效應不同。
zh_TW
dc.description.abstractWhen the incubation medium contained various concentration of osmoticant, polyenthylene glycol (PEG), 2-day old etiolted seedlings (Ca. 6.5 cm long) were found to be equivalent to -5.4 bars. So the water potential less than -5.4 bars was considered as stressed conditions.
Water stress inhibited growth and protein synthesis by a rapid change of polyribosomes into monoribosomes as shown by the others (16, 23, 30). At -6.75 bars when water stress is not serious, 3H-leucine incorporation into protein was slightly inhibited, however, the inhibition of 3H-leucine incorporation was obviously decreased if water potential was less than -6.75 bars. Similarly the in vitro RNA polymerase I and II activities for RNA synthesis by isolated nuclei from water stressed seedlings declined dramatically at -8 bars.
When seedlings were transfered back to -5.4 bars for recovery from stress at 8 bars for 1 hr, 3H-leucine incorporation increased slightly and likewise the level of polyribosomes during 4 hr recovery period. RNA polymerase I and II activities by isolated nuclei, however, recovered to almost the initial level. So the effect of water stress at -8 bars was reversible and beyond this stress no recovery of protein synthesis was observed.
3H-labeled proteins from soybean seedlings under various water potentials were analyzed by SDS/ 12.5% polyacrylamide gel electrophorysis and fluorography. The patterns of protein bands in gels were found without any noticeable differences. The effect of water stress on protein synthesis was not as dramastic as heat shock effect and they are possibly different.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:13:15Z (GMT). No. of bitstreams: 0
Previous issue date: 1982
en
dc.description.tableofcontents目錄
英文摘要………………………………………………………………………………1
中文摘要………………………………………………………………………………3
一、緒言………………………………………………………………………………5
二、實驗材料………………………………………………………………………………8
三、實驗方法………………………………………………………………………………11
四、實驗結果………………………………………………………………………………16
五、討論………………………………………………………………………………37
六、參考文獻………………………………………………………………………………41
dc.language.isozh-TW
dc.title缺水對大豆白化幼苗蛋白質合成的影響zh_TW
dc.titleThe effect of water stress on protein systhesis of soybean seedlingen
dc.date.schoolyear70-2
dc.description.degree碩士
dc.relation.page47
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved