請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75447完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 王鬱峻 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:13:15Z | - |
| dc.date.available | 2021-07-01T08:13:15Z | - |
| dc.date.issued | 2003 | |
| dc.identifier.citation | 王鬱峻。2001。黑鯛適應不同環境鹽度的生理機制。國立中興大學動物系學士論文。
張詣奇。2001。淡水魚的氯離子吸收機制探討。國立臺灣大學漁業學研究所博士論文。 Alderdice, D. F. (1988). Osmotic and ionic regulation in teleost eggs and larvae. In: Fish Physiology. vol. 11A. (S. W. Hoar and D. J. Tansall, eds.) Academic Press, San Diego, pp. 163-251. Avella, M., Masoni, A., Bornancin, M. and Mayer-Gostan, N. 1987. Gill morphology and sodium influx in the rainbow trout (Salmon gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 241:159-169. Avella, M., Berhaut, J., and Bornancin, M. 1993. Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium. J. Fish Biol., 42:243-254. Brown, D. and Breton, S. 1996. Mitochondria-rich, proton-secreting epithelial cells. J. Exp. Biol. 199:2345-58. Butler, D.G. and Carmichael, F.J. 1972. Na+,K+-ATPase activity in eel (Anguilla rostrata) gills in relation to changesin environmental salinity Role of adrenocortical steroids.Gen. Comp. Endocrinol. 19:421-427. Chang, I. C., Lee, T. H., Yang, C. H., Wei, Y. Y., Chou, F. I. and Hwang, P. P. 2001. Modulation in morphology and function of gill mitochondria-rich cells in fish acclimated to different environments. Physiol. Biochem. Zool. 74: 111-119. Cutler, C.P., Sanders, I.L., Hazon, N. and Cramb, G. 1995a. Primary sequence, tissue specificity and mRNA expression of Na+,K+-ATPase a subunit in the European eel (Anguilla anguilla). Comp. Biochem. Phsyiol. 111B:567-573. Cutler, C.P., Sanders, I.L., Hazon, N. and Cramb, G. 1995b. Primary sequence, tissue specificity and mRNA expression of Na+,K+-ATPase al subunit in the European eel (Anguilla anguilla). Fish Phsyiol. Biochem. 14:423-429. Cutler, C.P., Sanders, I.L. and Cramb, G. 1997. Expression of Na+,K+-ATPase p-subunit isoforms in the European eel (Anguilla anguilla). Fish Physiol. Biochem. 17:371-376. D’Cotta, H.C., Gallais, C., Saulier, B. and Prunet, P. 1996. Comparison between parr and smolt Atlantic salmon (Salmo salar) a subunit gene expression of Na+,K+-ATPase in gill tissue. Fish Physiol. Biochem. 15:29-39. Feng, S. H., Leu, J. H., Yang, C. H., Fang, M. J., Huang, C. J. and Hwang, P. P. 2002. Gene expression of Na+-K+-ATPase alpha 1 and 3 subunits in gills of the teleost, Oreochromis mossambicus, adapted to different environmental salinity. Mole. Marine Biol. Biotech. 4: 379-391. Flik, G., Van Rijs, J. H. and Wendelaar Bonga, S. E. 1985b. Evidence for high-affinity Ca2+-ATPase activity and ATP-driven Ca2+-transport in membrane preparations of the gill epithelium of the cichild fish Oreochromis mossambicus. J. Exp. Biol. 119:335-347. Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N. and Wendelaar Bonga, S. 1986. Effects of low ambient calcium levels on whole-body Ca2+ flux rates and internal calcium pools in the freshwater cichlid teleost, Oreochromis mossambicus. J. Exp. Biol. 120:249-264. Flik, G. and Verbost, P. M. 1993. Calcium transport in fish gills and intestine. J. Exp. Biol. 184:17-29. Hossler, F.E. 1980. Gill arch of the mullet, Mugil cephalus. III. Rate of response to salinity changes. Am. J. Physiol. 238:R160-R164. Hootman, S.R., and Philpott, C.W. 1978. Rapid isolation of chloride cells from pinfish gill. Anat. Rec. 190:687-702. Hwang, P.P. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94:643-649. Hwang, P.P., Sun, C.M., and Wu, S.M. 1988. Changes of plasma osmolality, chloride concentration and gill Na-K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol., 100:295-299. Hwang, P.P., Sun, C.M. and Wu, S.M. 1988. Characterization of gill Na+-K+-ATPase from tilapia Oreochromis mossambicus. Bull. Inst. Zool. Acad. Sinica. 27:49-56. Hwang, P.P., Sun, C.M. and Wu, S.M. 1989. Changes of plasma osmolarity, chloride concentration and gill Na+-K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100:295-299. Hwang, P.P. 1990. Immunocytochemical identification of prolactin cells in the pituitary gland of tilapia larvae (Oreochromis mossambicus: Teleostei). Cell Tiss. Res. 260:203-205. Hwang, P. P., Tsai, Y. N. and Tung, Y C. 1994. Calcium balance in embryos and larvae of the freshwater-adapted teleost, Oreochrmis mossmabicus. Fish Physiol. Chem. 13, 325-333. Hwang, P.P., Lee, T.H., Weng, C.F., Fang, M.J. and Cho, G.Y. 1999. Presence of Na+,K+-ATPase in mitochondria-rich cells in yolk-sac epithelium of larvae of the teleost, Oreochromis mossamibcus. Physiol. Biochem. Zool.72(2):138-144. Isihara, A. and Mugiya, Y. 1987. Ultrastructual evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus. J. Exp. Zool. 242: 121-129. Jobling, M. 1995a. Osmotic and ionic regulation - water and salt balance. In: Environmental Biology of Fishes. Chapman and Hall. London, UK. pp. 211-250. Jobling, M. 1995b. Environmental biology of fishes. 211-249. Chapman and Hall. Kamiya, M. 1972. Sodium-potassium-activated adenosinetriphosphatase in isolated chloride cells from eel gills. Comp. Biochem. Physiol.43B:61 1-617. Karnaky, K.J., Jr., Kinter, L.B., Kinter, W.B., and Stirling, C.E. 1976b. Teleost chloride cell II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J. Cell Biol., 70:157-177. Katoh, F. Hyodo, S. and Kaneko, T. 2003. Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J. Exp. Biol. 206: 793-803. Keys, A.B. and Willmer, E.N. 1932. “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. Lond. 76:368-378. Kisen, G., Gallais, C., Auperin, B., Klungland, H., Sandra, O., Patrick, P. and Andersen, O. 1994. Northern blot analysis of the Na,K-ATPase a subunit in salmonids. Comp. Biochem. Physiol. 107B:25 5-259. Kultz, D., Jurss, K. 1993. Biochemical characterization of isolated branchial mitochondria-rich cells of Oreochromis mossamcibus acclimatedto fresh water or hypersaline sea water. J. Comp. Physiol. B 163: 406-412. Kultz, D., Jurss, K. and Jonas, L. 1995. Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossameibus). Cell Tissue Res. 279:65-73. Lee, T.H., Lin, H.C., Yu, M.J., Huang, F.L. and Hwang, P.P. 1995. Mitochondria-rich cells in gills of the euryhaline teleost, Oreochromis mossambiczis. Zool. Stud. 34:239-240. Lee, T. H., Hwang, P.P., Lin, H.C. and Huang, F.L.1996. Mitochondria-rich cells in the branchial epithelium of the teleost, (Oreochromis mossambicus), acclimated to various hypotonic environments. Fish Physiol. Biochem. 15 :5 13-523. Lee, T.H., Tsai, J.C., Fang, M.J., Yu, M.J. and Hwang, P.P. 1998. Isoform expression of Na,K-ATPase a-subunit in gills of the teleost, Oreochromis mossmbicus. Am. J. Physiol. 275:R926-R928. Lin, L. Y., Weng, C. F. and Hwang, P. P. 2000. Effects of cortisol and salinity challenge on water balance in developing larvae of tilapia (Oreochromis mossambicus) Physiol. Biochem. Zool. 73 :283-289. Lin, L. Y. C. F. Weng and P. P. Hwang. 2001. Regulation of drinking rate in euryhaline tilapia larvae (Oreochromis mossambicus) during salinity challenges. Physiol. Biochern. Zool. 74: 17 1-177. Madsen, S.S., Jensen, M.K., Nohr, J. and Kristiansen, K. 1995. Expression of Na+,K+-ATPase in the brown trout, Salmo trutta : in vivo modulation by hormones and seawater. Am. J. Physiol. 269:R1339-R1345. Marshall, W.S., Emberley, T.R., Singer, T.D., Bryson, S.E., and McCormick, S.D. 1999. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach. J. Exp. Biol., 202: 1535-1544. Masoni, A., Isaia, J., Sola,F. and Bornancin, M. 1984. Adaptation de salmo gairdneri a desmilieux fablement ionizes : consequencessur la morphologie et al physiologie de l’epitheliurn branchial. Ichtyophysiol. Acta 8:98-114. McCormick, S.D., Moyes, C.D., and Ballantyne, J.S. 1989. Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiol. Biochem., 6:253-254. Morgan, I.J., Potts, W.T.W. and Oates, K. 1994. Intracellular ion concentrations in branchial epithelial cells of brown trout (Salmo trutta L.) determined by X-ray microanalysis. J. Exp. Biol. 194:139-151. Morgan, I.J. and Potts, W.T.W. 1995. The effects of the adrenoreceptor agonist phenylephrine and isoproterenol on the intracellular ion concentrations of branchial epithelial cells of brown trout (Salmo trutta L.). J. Comp. Physiol. B 165:458-463. Naon, R., and Mayer-Gostan, N. 1983. Separation by velocity sedimentation of the gill epithelial cells and their ATPases activities in the seawater adapted eel Anguilla anguilla L. Comp. Biochem. Physiol. 75A:541-547. Pagliarani, A., Ventrella, V., Ballestrazzi, R., Trmbetti, F., Pirini, M., and Trigari, G. 1991. Salinity dependence of the properties of gill (Na++K+)-ATPase in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., 100B :229-236. Perrot, M. N., Grierson, C. E., Hazon, N. and Balment, R. J. 1992. Drinking behavior in sea water and fresh water teleosts, the role of the renin-angiotensin system. Fish Physiol. Biochem. 10, 161-168. Perry, S.F., Haswell, M.S., Randall, D.J. and Farrell, A.P. 1981a. Branchial ionic uptake and acid-base regulation in the rainbow trout, (Salmo gairdneri). J. Exp. Biol. 92:289-303. Perry, S.F. and Randall, D.J. 198 lb. Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, (Salmo gairdneri). J. Exp. Zool. 2 15:225-228. Perry, S. F. and Flik, G. 1988. Chacterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo gairdneri. Am. J. Physiol.254:R491-498. Perry, S.F., Goss, G.G. and Fenwick, J.C. 1992a. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish Physiol. Biochem. 10:327-337. Perry, S.F., Goss, G.G. and Laurent, P. 1992b. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can. J. Zool. 70:1775-1786. Perry, S.F. and Goss, G.G. 1994. The effects of experimentally altered gill chloride cell surface area on acid-base regulation in rainbow trout during metabolic alkalosis. J. Comp. Physiol. A. 164:327-336. Sargent, J.R., Thomson, A.J. and Bornancin, M. 1975. Activities and localization of succinic dehydrogenase and Na,K-activated adenosine triphosphatase in the gills of fresh water and sea water eels (Anguilla anguilla). Comp. Biochem. Physiol. 51B :75-79. Shehadeh, Z. H. and Gordon, M. S. (1969). The role of the intestine in salinity adaptation in the rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 30, 397-418. Shikano, T. and Fujio, Y. 1998a. Relationships of salinity tolerance to immunolocalization of Na+,K+-ATPase in the gill epithelium during seawater and freshwater adaptation of the guppy, Poecilia reticulata. Zool. Sci. 15:35-41. Shikano, T. and Fujio, Y. 1998b. Immunolocalization of Na+,K+-ATPase and morphological changes in two types of chloride cellsin the gill epithelium during seawater and freshwater adaptation in euryhaline teleost, Poecilia reticulata. J. Exp. Zool. 28 1:80-89. Shiraishi, K., Kaneko, T., Hasegawa, S. and Hirano, T. 1997. Developmental of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res. 288:583-590. Tytler, P., Tatner, M. and Findlay, C. (1990). The ontogeny of drinking in the rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 36, 867-875. Uchida, K., and Kaneko, T. 1996a. Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13:655-660. Uchida, K., Kaneko, T., Uamauchi, K. and Hirano, T. 1996b. Morphometrical analysis of chloride cell activity in the gill filaments and larnellae and changes in Na+,K+-ATPase activity during seawater adaptation in chum salmon fry. J. Exp. Zool. 276:193-200. Ura, K., Soyano, K., Omoto, N., Adachi, S. and Yamauchi, K. 1996. Localization of Na+,K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the a-subunit. Zool. Sci.13 : 219-227. Verbost, P. M., Schoenmakers, Th. J. M., Flik, G. and Wendelaar Bonga. S. E. 1994. Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater- adapted tilapia. J. Exp. Biol. 186:95-108. Witters, H.E., Berchmans, P. and Vangenechten, C. 1996. Immunolocalization of Na+,K+-ATPase in the gill epithelium of rainbow trout, Oncorhynchus mykiss. Cell Tissue Res. 283 :461-468. Wong,C.K.C. and Chan D.K.O. 1999. Isolation of viable cell types from the gill epithelium of Japanese eel Anguilla japonica. Am. J. Phyiol,276 :R3 63 -R3 72. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75447 | - |
| dc.description.abstract | 前人的研究發現黑鯛(Acanthopagrus schlegeli)與吳郭魚(Oreochromis mossambicus)鰓上 Na + , K+-ATPase活性在淡水與海水中趨勢相反。因此我們假設黑鯛與吳郭魚滲透壓調節機制不同。本實驗以淡水的黑鯛與吳郭魚為研究材料,探討黑鯛和吳郭魚淡水適應的滲透壓調節機制的比較。實驗分成離子平衡、水平衡與 MR 細胞的變化情形。在離子平衡的部分,分別探討黑鯛與吳郭魚體內氯、鈣與鈉離子的含量,氯及鈣離子的吸收;水平衡的部分,探討淡水與海水適應的黑鯛和吳郭魚的喝水速率;MR細胞的觀察部分探討淡水適應的黑鯛和吳郭魚 MR 細胞的形態與數目的變化。
離子平衡的部分,淡水的黑鯛,體組織氯離子的含量顯著的低於淡水的吳郭魚。在氯離子的速率方面,淡水的黑鯛其體內氯離子的流出速率大於流入速率而呈現為淨流出的現象,而淡水的吳郭魚體內氯離子的流入速率大於流出速率而呈現為淨流入的現象,顯示黑鯛和吳郭魚適應淡水的滲透壓調節機制可能不同。淡水的黑鯛,體組織鈣、鈉離子的含量與淡水的吳郭魚並沒有顯著的差異。淡水的黑鯛與吳郭魚其體內的鈣離子流入速率與喝水速率皆沒有顯著差異。MR細胞的觀察結果顯示 ,淡水的黑鯛鰓上 MR 細胞主要的形態是突起型 ,根據前人的報告,突起型MR細胞鰓上 Na + , K+-ATPase活性較高,此一現像是適應低氯環境的補償作用。所以正常淡水氯濃度的環境底下對黑鯛來說是一個低氯的環境,黑鯛對環境氯離子濃度的反應比吳郭魚更敏感,可是淡水黑鯛氯離子的吸收並沒有增加,顯示黑鯛氯離子的吸收機制的效率較差或者黑鯛氯氣離子吸收的機制不同。 | zh_TW |
| dc.description.abstract | The previous study showed that black porgy (Acanthopagrus schlegeli) and tilapia (Oreochromis mossambicus) showed reverse patterns in the gill of Na+,K+-ATPase upon salinity challenges. Hence, we hypothesize that black porgy and tilapia exhibit different mechanisms of osmoregulation. To test the hypothesis, the experiment were focused on the comparisons in ion balance, water balance and morphology of MR cells between balck porgy and tilapia acclimated to fresh water (FW). Whole-body chloride content in FW black porgy is significant lower than that in FW tilapia. However, there is no significant difference in calcium or sodium content between FW black porgy and FW tilapia. The chloride influx in FW black porgy is significantly lower than that in FW tilapia, but no significant difference in the chloride efflux was found between the 2 species. As a result, chloride net flux is negative in FW black porgy but is positive in FW tilapia, suggesting differences between the two species in the chloride uptake mechanism in FW. FW black porgy and FW tilapia have no significant difference in water drinking rate or in calcium influx. The apical openings of gill MR cells in FW black porgy are all wavy-convex type, while shallow-basin and deep-hole types occur in gills of FW tilapia. FW black porgy has more numerous MR cells than does FW tilapia. The more MR cells with wavy-convex apical openings (i.e., larger apical surface area) is associated with the higher gill Na+,K+-ATPase activity in FW black porgy. Taking all together into account, FW black porgy seems to be more sensitive to environmental chloride concentrations than FW tilapia. Black porgy may have to develop more MR cells with larger apical surfaces in order to absorb sufficient chloride from normal FW, but a lower chloride influx suggests a different chloride uptake mechanism with lower efficiency in black porgy comparing with that in tilapia. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:15Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
| dc.description.tableofcontents | 中文摘要. . . . . . . . . . . . . . . . 1 英文摘要. . . . . . . . . . . . 2 前言. . . . . . . . . . . . . . . . . 4 硬骨魚類滲透壓調節. . . . . . . . 4 鰓為硬骨魚類主要的滲透壓調節器官. . . . . . . 4 魚類鰓部的MR細胞 . . . . . . . . .4 MR 細胞與 Na + , K+-ATPase. . . . . . . . . . 5 海水 MR細胞的排鹽機制 . . . . . 6 淡水 MR細胞的吸鹽機制 . . . . . 6 MR 細胞在鈣離子調節上所扮演的角色. . . . . 7 研究動機. . . . . . . . . . . . . . . . . . . . 9 材料與方法. . . . . . . . . . . . . . . . . . .11 一、 試驗動物 . . . . . . . . . . . . . 11 實驗魚種來源及馴養環境. . . . . 11 二、實驗用水. . . . . . . . . . . . . . 11 三、實驗方法 . . . . . . . . . . . . . . . . . 12 魚體組織氯離子含量測定. . . . . . . . . . 12 魚體組織鈉、鈣及鉀離子含量測定. . . . . . . 12 氯離子離子流速( Cl- flux rate )的測定. . . . . . . 13 鈣離子流入速率( Ca2+ influx rate )的測定. . . . . . . . 15 喝水速率( water drinking rate )之測量. . . . . . . . . 17 鰓上Na+,K+-ATPase 活性之測定. . . . . . . . . 18 MR 細胞形態觀察測定 . . . . . . . . 21 結果. . . . . . . . . . . . . . . . . . . . . . . . 22 預備實驗 . . . . . . . . . . . . . . . . . . . . . . 22 氯離子流進速率(Cl-influx rate)的方法之建立. . . . . . . . 22 鈣離子流進速率(Ca2 + influx rate)的方法之建立. . . . . . . 22 喝水速率( water drinking rate )的方法之建立. . . . . . . . . . . 22 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 馴養在淡水的黑鯛與吳郭魚體內的氯、鈣與鈉離子含量變化. . . . . . . . 22 馴養在淡水的黑鯛與吳郭魚氯離子流速(流進及流出)變化. . . . . . . . 23 黑鯛由海水轉移至淡水短期馴養(不餵食)長期馴養(餵食)體內氯離子含量的變化. . . . . . . . . 23 鈣離子流入速率( Ca2+ influx rate )的變化. . . . . . . . 23 喝水速率(water drinking rate) . . . . . . . . . . . . . . . . . . . 24 馴養在淡、海水中的黑鯛鰓上 Na+ , K+-ATPase 活性變化. . . . . 24 MR 細胞的觀察. . . . . . . . . . . . . . . . . . . . . . . . . . . .24 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 本研究的發現. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 黑鯛與吳郭魚氯離子的含量與氯離子的流速(流出速率與流入速率) . . . . . . . . 26 黑鯛與吳郭魚鈣離子的含量與鈣離子的吸收. . . . . . . . . . . 26 鈉離子的吸收. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 黑鯛與吳郭魚在淡水及海水適應下的喝水速率 . . . . . . . . . 27 黑鯛鰓上 Na + , K+-ATPase 活性變化. . . . . . . . . . . 29 MR 細胞形態測定. . . . . . . . . . . 29 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 參考文獻. . . . . . . . . . . . . . . . . 33 表. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 | |
| dc.language.iso | zh-TW | |
| dc.title | 廣鹽性魚類離子平衛與水平衡之研究 | zh_TW |
| dc.title | The Study in Ion and Water Balance in Euryhaline Teleost | en |
| dc.date.schoolyear | 91-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
