請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75425完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Feng-Yi Ma | en |
| dc.contributor.author | 馬鳳儀 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:13:08Z | - |
| dc.date.available | 2021-07-01T08:13:08Z | - |
| dc.date.issued | 2003 | |
| dc.identifier.citation | 于東平、劉佃全、楊愛英、張建軍、孫健。1992。無機鹽結晶在藥用植物中的分佈及在生藥學顯微鑑定中的應用。中國藥學雜誌27: 177-179。 肖新月、佐竹元吉。1998。桂皮類中藥中草酸鈣晶體的電鏡研究。中國中藥雜誌23: 515-518。 李全華、陸榮傑。1994。草酸鈣結晶體和石細胞顯微特徵在藥材顯微鑑別中的應用。中藥材17: 26-29。 李國基。2001。台灣金線連與蘭菌之鑑定及生產技術改進。國立台灣大學園藝學研究所博士論文。 李煥炎、劉國柱、周正仁。1976。台灣藥用植物之探討。臺北市。國立中國醫藥研究所。p. 279-280。 林哲民、林俊清、吳佩珊、邱慧芬、李興進。1991。台灣產生藥金線蓮、靈芝、絞股藍之抗炎症及保肝作用研究。藥用及保健植物研討會專輯。台東市。台東區農業改良場編印。p. 89-98。 林讚標。1977。台灣蘭科植物(第二冊)。嘉義市。王積祺發行。p.46-47。 吳啟智。1995。桑科植物鈣結晶與培養液中不同鈣離子濃度對小葉桑葉部鈣結晶形成的影響。國立台灣大學植物科學研究所碩士論文。 許嘉烈。1994。菌根對胡蘿蔔體胚苗與台灣金線蓮組織培養苗生長之影響。國立台灣大學園藝學研究所碩士論文。 張慧真。2002。鈣對菠菜生長的營養功能。國立台灣大學農業化學研究所碩士論文。 黃憶汝。2001。部份地生蘭和附生蘭葉部之鈣晶體與矽沈澱物和金線連葉部形態發生及其內針束狀晶體之分佈與發育。國立台灣大學植物科學研究所碩士論文。 楊淑怡。2000。不同鈣離子濃度對銳葉菜豆與菜豆的葉片生長及鈣結晶體形成的影響。行政院 國家科學委員會 大專學生暑期參與專題研究計畫報告。編號:89-2815-C-002-0090B。 劉新裕、蔡新聲、黃漢津、胡敏夫、葉常青。1987。金線連大量繁殖與栽培後之生育性狀、種間比較及營養成分研究。中華農業研究36: 357-366。 顏東敏、陳幸琴、廖正雄。1996。金線連繁殖技術。東港鎮農會出版。淑馨出版社經銷。 Addadi, L. and S. Weiner 1985. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. U.S.A 82: 4110-4114. Arnott, H. J. and F. G. E. Pautard 1970. Calcification in plants. In H. Schraer ed. Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York. p. 375-446. Berman, A., J. Hanson, L. Leiserowitz, T. F. Koetzle, S. Weiner, and L. Addadi. 1993. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function. Science 259: 776-779. Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials. I. Sample preparation and mass spectrometric analysis. In: Coleman DC, Fry B (eds) Carbon isotopes techniques. Academic Press Inc., San Diego, p. 155-171. Brenda, M. F. 2001. Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann. Bot. 88: 387-391. Brubaker, C. L. and H. T. Horner 1989. Development of epidermal crystals in leaflet of Stylosanthes guianensis (Leguminosae; Papilionoideae). Can. J. Bot. 67: 1664-1670. Bush, D. S. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. 46: 95-122. Campbell, A. A., A. Ebrahimpour, L. Perez, S. A. Smesko, and G. H. Nancollas. 1989. The dual role of polyelectrolytes and proteins as mineralization promoters and inhibitors of calcium oxalate monohydrate. Calcif. Tissue Int. 45: 122-128. Chang, C. C. and H. Beevers 1968. Biogenesis of oxalate in plant tissues. Plant Physiol. 43: 1821-1828. Clarkson, D. T. 1984. Calcium transport between tissues and its distribution in the plant. Plant Cell Environ. 7: 449-456. Demarty, M., C. Morvan, and M. Thellier. 1984. Calcium and the cell wall. Plant Cell Environ. 7: 441-448. Du, X. M., T. Yoshizawa, and Y. Shoyama. 1998. Butanoic acid glucoside composition of whole body and in vitro plantlets of Anoectochilus formosanus. Phytochemistry 49: 1925-1928. Fink, S. 1991. The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol. 119: 33-40. Foster, A. S. 1956. Plant idioblasts: Remarkable examples of cell specialization. Protoplasma 46: 184-193. Franceschi, V. R. 1984. Developmental features of calcium oxalate crystal sand deposition in Beta vulgaris L. leaves. Protoplasma 120: 216-223. Franceschi, V. R. 1989. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148: 130-137. Franceschi, V. R. and H. T. Horner 1979. Use of Psychotria punctata callus in study of calcium oxalate crystal idioblast formation. Z Pflanzenphysiol. 92: 61-75. Franceschi, V. R. and H. T. Horner 1980. Calcium oxalate crystals in plants. Bot. Rev. 46: 361-427. Franceschi, V. R. and F. A. Loewus 1995. Oxalate biosynthesis and function in plants and fungi. In: S.R. Khan, ed., Calcium oxalate in biological systems. p. 113-130. CRC Press Boca Raton. Frank, E. 1972. The formation of crystal idioblasts in Canavalia ensiformis D.C. at different levels of calcium supply. Z. Pflanzenphysiol. 67: 350-358. Frey-Wyssling, A. 1981. Crystallography of two hydrates of crystalline calcium oxalate in plants. Am. J. Bot. 68: 130-141. Gahan, P. B. 1984. Plant histochemistry and cytochemistry: an introduction. Queen Elizabeth College. London U.K. p. 201-209, 228-244. Grover, P. K., R. L. Moritz, R. J. Simpson, and R. L. Ryall, 1998. Inhibition of growth and aggregation of calcium oxalate crystals in vitro—A comparison of four human proteins. Eur. J. Biochem. 253: 637-644. Halliwell, B. and V. S. Butt 1974. Oxidative decarboxylation of glycolate by leaf peroxisomes. Biochem. J. 138: 217-224. Hepler, P. K. 1994. The role of calcium in cell division. Cell Calcium 16: 322-330. Hepler, P. K. and R. O. Wayne 1985. Calcium and plant development. Ann. Rev. Plant Physiol. 36: 397-439. Hewitt, E. J. and T. A. Smith 1975. Plant mineral nutrition. The English Universities Press Ltd., London. Horner, H. T. and B. L. Wagner 1980. The association of druse crystals with the developing stomium of Capsicum annuum (Solanaceae) anthers. Am. J. Bot. 67: 1347-1360. Horner, H. T. and B. L. Wagner 1995. Calcium oxalate formation in higher plants. In: S.R. Khan, ed., Calcium oxalate in biological systems. p. 53-72. CRC Press Boca Raton. Horner, H. T. and R. E. Whitmoyer 1972. Raphide crystal cell development in leaves of Psychotriapunctata (Rubiaceae). J. Cell. Sci. 11: 339-355. Horner, H. T., A. P. Kausch, and B. L. Wagner. 2000. Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Int. J. Plant Sci. 161: 861-868. Huang, D. D., C. S. Law, and O. T. Mak. 1991. Effects of tissue-cultured Anoectochilus formosanus Hay. extracts on the arachidonate metabolism. Bot. Bull. Acad. Sin. 32: 113-119. Jones, J. B. 1998. Plant nutrition manual. CRC Press Boca Raton. p. 46-48. Kausch, A. P. and H. T. Horner 1983a. The development of mucilaginous raphide crystal idioblasts in young leaves Typha angustifolia L. (Typhaceae). Am. J. Bot. 70: 691-705. Kausch, A. P. and H. T. Horner 1983b. Development of syncytial raphide crystal idioblasts in the cortex of adventitious roots of Vanilla planifolia L. (Orchidiaceae). Scan. Electron Microsc. II: 893-903. Kausch, A. P. and H. T. Horner 1984a. Differentiation of raphide crystal idioblasts in isolated root cultures of Yucca torreyi (Agavaceae). Can. J. Bot. 62: 1474-1484. Kausch, A. P. and H. T. Horner 1984b. Increased nuclear DNA content in raphide crystal idioblasts during development in Vanilla planifolia L. (Orchidaceae). Euro. J. Cell Biol. 33: 7-12. Keates, S. E., N. M. Tarlyn, F. A. Loewus, and V. R. Franceschi. 2000. L-ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry 53: 433-440. Keeley, J. E. 1998a. C4 photosynthetic modification in the evolutionary transition from land to water in aquatic grasses. Oecologia 116: 85-97. Keeley, J. E. 1998b. CAM photosynthesis in submerged aquatic plants. Bot. Rev. 64: 121-175. Kenten, R. H. and P. J. G. Mann 1952. Hydrogen peroxide formation in oxidations catalized by plant α-hydroxy acid oxidase. Biochem. J. 52: 130-134. Kinzel, H. 1989. Calcium in the vacuoles and cell walls of plant tissue. Flora 182: 99-125. Kirkby, E. A. and D. J. Pilbeam 1984. Calcium as a plant nutrient. Plant Cell Environ. 7: 397-405. Kok, D. J., L. J. Blomen, P. Westbroek, and O. L. Bilvoet. 1986. Polysaccharide from coccoliths (CaCO3) biomineral. Influence on crystallization of calcium oxalate monohydrate. Eur. J. Biochem. 158: 167-172. Kornberg, H. L. and H. A. Kerbs 1957. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 197: 988-991. Kostman, T. A. and V. R. Franceschi 2000. Cell and calcium oxalate crystal growtxs h is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma 214: 166-179. Kuo-Huang, L. L., C. R. Sheue, Y P. Yang, and S. H. Tsai Chiang, 1994. Calcium ocalate crystals in some aquqtic angiosperms of Taiwan. Bot. Bull. Acad. Sin. 34: 179-188. Leigh, R. A. and A. D. Tomos 1993. Ion distribution in cereal leaves: Pathways and mechanisms. Philos. Trans. R. Soc. Lond. B 341: 75-86. Lersten, N. R. 1974. Morphology and distribution of colleters and crystals in relation to the taxonomy and bacterial leaf nodule symbiosis of Psychotria (Rubiaceae). Am. J. Bot. 61: 973-981. Lersten, N. R. and H. T. Horner 2000. Calcium oxalate crystal types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst. Evol. 224: 83-96. Letellier, S. R., M. J. Lochhead, A. A. Campbell, and V. Vogel. 1998. Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers. Biochim. Biophys. Acta 1380: 31-45. Loewus, F. A., G. Wagner, and J. C. Yang. 1975. Biosynthesis and metabolism of ascorbic acid in plants. Ann. N. Y Acad. Sci. 258: 7-23. Loneragan, J. F. and K. Snowball 1969. Calcium requirements of plants. Aust. J. Agric. Res. 20: 465-478. Marm?, D. 1985. The role of calcium in the cellular regulation of plant metabolism. Physiol. Veg. 23: 945-953. McConn, M. M. and P. A. Nakata 2002. Calcium oxalate crystal morphology mutants from Medicago truncatula. Planta 215: 380-306. Mckee, M. D., A. Nanci, and S. R. Khan. 1995. Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J. Bone Miner. Res. 10: 1913-1929. Millerd, A., R. K. Morton, and J. R. E. Wells. 1963a. Role of isocitrate lyase in synthesis of oxalic acid in plants. Nature 196: 955-956. Millerd, A., R. K. Morton, and J. R. E. Wells. 1963b. Enzymatic synthesis of oxalic acid in Oxalis pes-caprae. Biochem. J. 88: 281-228. M?bius, M. 1908. %22Uber Raphiden in Epidermiszellen. Ber. Deutsch. Bot. Ges. 23: 485-489. Mollenhauer, H. H. and D. A. Larson 1966. Developmental changes in raphide-forming cells of Vanilla planifolia and Monstera deliciosa. J. Ultrastruct. Res. 16: 55-70. Myers, A. T. 1947. Seasonal changes in total and soluble oxalates in leaf blades and petioles of rhubarb. J. Agr. Res. 74: 33-47. Nakagawa, Y., M. A. Ahmed, S. L. Hall, S. Deganello, and F. L. Coe, 1987. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. J. Clin. Invest. 79: 1728- 1787. Nakata, P. A. and M. M. McConn 2000. Isolation of Medicago truncatula mutants defective in calcium oxalate crystal formation. Plant Physiol. 124: 1097-1104. Noll, C. R. and R. H. Burris 1954. Nature and distribution of glycolic acid oxidase in plants. Plant Physiol. 29: 261-165. Nuss, R. F. and F. A. Loewus 1978. Further studies on oxalic acid biosynthesis in oxalate-accumulating plant. Plant Physiol. 61: 590-592. Osmond, C. B. and P. N. Avadhani 1968. Acid metabolism in Atriplex. II. Oxalate synthesis during acid metabolism in the dark. Aust. J. Biol. Sci. 21: 917-927. Prychid, C. J. and P. J. Rudall 1999. Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann. Bot. 84: 725-739. Pucher, G. W., A. J. Wakeman, and H. B. Vickery. 1939. Organic acid metabolism of the buckwheat plant. Plant Physiol. 14: 333-340. Rasumussen, H. 1989. The cycling of calcium as an intracellular messenger. Sci. Am. 261: 66-73. Robe, W. E. and H. Griffiths 2000. Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environ. 23: 1041-1054. Ruiz, N., D. Ward, and D. Saltz. 2002. Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defence Funct. Ecol. 16: 99-105. Sakai, W. S., M. Hanson, and R. C. Jones. 1972. Raphides with barbs and groove in Xanthosoma sagittifolium (Araceae). Science 178: 314-315. Seal, S. N. and S. P. Sen 1970. The photosynthetic production of oxalic acid in Oxalis corniculata. Plant and Cell Physiol. 11: 119-128. Smith, E. L. 1923. The histology of certain orchids with referance to mucilage secretion and crystal formation. Bull. Torrey Bot. Club. 50: 1-16. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31-43. Steinmann, A. B. 1917. Studien ?ber die Azidit?t des Zellsaftes beim Rhubarber. Z. Bot. 9: 1-59. Stutz, R. E. and R. H. Burris 1951. Photosynthesis and metabolism of organic acids in higher plants. Plant Physiol. 26: 226-243. Takatsuki, S., J. D. Wang, T. Narui, and T. Okuyama. 1992. Studies on the components of crude drug Kim-soan-lian. Journal of Japanese Botany 67: 121-123. Thurston, E. L. 1976. Morphology, fine structure and ontogeny of the stinging emergence of Tragia ramose and T saxicola (Euphorbiaceae). Am. J. Bot. 63: 710-718. Ueno, O. 1996. Immunocytochemical localization of enzymes involved in the C3 and C4 pathways in the photosynthetic cells of an amphibious sedge, Eleocharis vivipara. Planta 199: 394-403. Volk, G. M., V. J. Lynch-Holm, T. A. Kostman, L. J. Goss, and V. R. Franceschi. 2002. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4: 34-45. Walters, D.A., B. L. Smith, B. L. Belcher, A. M. Paloczi, G. D. Stucky, D. E. Morse, and P. K. Hansma. 1997. Modification of calcite crystal growth by abalone shell proteins: An atomic force microscope study. Biophys. J. 72: 1425-1433. Wang, Z. Y., K. S. Gould, and K. J. Patterson. 1994. Structure and development of mucilage-crystal idioblasts in the roots of five Actinidia species. Int. J. Plant Sci. 155: 342-349. Ward, D., M. Spiegel, and D. Saltz. 1997. Gazelle herbivory and interpopulation differences in calcium oxalate content of leaves of a desert lily. J. Chem. Ecol. 23: 333-346. Webb, M. A. 1999. Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11: 751-761. Webb, M. A. and H. J. Arnott 1982. A survey of calcium oxalate crystals and other mineral inclusions in seeds. Scan. Electron Microsc. III: 1109-1131. Webb, M. A. and H. J. Arnott 1983. Inside plant crystals: A study of the noncrystalline core in druses of Vitis vinifera endosperm. Scan. Electron. Microsc. IV: 1759-1770. Webb, M. A., J. M. Cavaletto, N. C. Carpita, L. E. Lopez, and H. J. Arnott. 1995. The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis. Plant J. 7: 633-648. Yang, J. C. and F. A. L?wus 1975. Metabolic conversion of L-ascorbic acid to oxalic acid in oxalate accumulating plants. Plant Physiol. 56: 283-285. Zhang, D., X. Li, V. Lynch-Holm, T. W. Okita, and V. R. Franceschi. 1994. High capacity sequestration in plant cells is mediated by vacuolar Ca binding protein. Plant Physiol. 105: 56. Zindler-Frank, E. 1967. Oxalate biosynthesis in relation to photosynthetic pathway and plant productivity—a survey. Z. Pflanzenphysiol. 80: 1-13. Zindler-Frank, E., R. H?now, and A. Hesse. 2001. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J. Plant Physiol. 158: 139-144. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75425 | - |
| dc.description.abstract | 本論文以台灣金線連台東種為實驗材料,觀察T1品系植株根部草酸鈣針束狀結晶異形細胞的分佈以及發育過程中的微細構造變化,並探討其於器官間及物種間的異同;另應用13C/12C穩定性同位素分析,鑑定台灣金線連在套袋與不套袋環境下的光合作用型;並配合不同鈣離子濃度的培養試驗,藉由全鈣、可溶性草酸、不可溶性草酸含量的測定及結晶密度分析,探討在T2品系中,草酸鈣結晶在鈣離子調控上所扮演的角色,並比較品系間的異同。 針束狀結晶異形細胞散生於根部表皮內第3?4層的皮層組織中,其發育過程可區分為六個階段:(1)結晶細胞發育早期、(2)晶體腔出現期、(3)鈣晶體累積期、(4)內質網膨脹期、(5)黏液質堆積期與(6)結晶細胞成熟期。發育初期結晶細胞較周圍皮層細胞早開始形成中央大液胞,接著液胞中大量不定形的電子緻密物質逐漸匯聚形成結晶腔,其內開始累積晶體,待晶體充滿結晶腔後,晶體周圍開始有黏液質產生,之後黏液質漸漸充滿整個液胞,並於晶束外圍及個別針晶之間形成電子緻密的黏液鞘,最終,板狀晶鞘形成,晶體的橫切面由四邊形轉為六至八邊形。整個發育過程中,細胞質明顯較周圍細胞濃稠,內含豐富胞器,顯出高度的生理代謝活性。結晶細胞特有的結晶色素體於發育過程中呈現多種不同的分化形態,其內並常有澱粉粒累積,此與其在葉部及其它物種中所觀察到的不同。另在黏液質開始產生的時期,發現結晶色素體邊緣分化出多個圓盤狀構造,其外具分泌物質而使周圍形成一圈空白區域,並且區域外常有內質網分佈,因此推測結晶色素體可能與黏液質的產生有關。 分化中的結晶色素體含少量不溶性多醣及蛋白質,幾乎不含脂質;而晶束旁的不定形的電子緻密物質及結晶腔,則主要由蛋白質構成;成熟細胞的黏液基質中含少量不溶性多醣及蛋白質,黏液鞘的成分主要為蛋白質。 經13C/12C穩定性同位素分析,並配合前人研究的結果,認為袋外培養的台灣金線連,為典型的CAM植物,生長緩慢;而在套袋栽培時,其可以同時進行C3及CAM型的CO2固定,夜間自介質與空氣中獲取CO2,將之固定於有機酸中累積下來,白晝則分解累積於體內的有機酸,同時自空氣中獲取CO2而進行碳的固定循環,也因此提高了植株的生長速率。 另在不同鈣離子濃度栽培試驗方面,於0Ca(0Mm)、1/8Ca(0.19mM)、1Ca(1.50mM)、8Ca(11.97mM)和16Ca(23.94 mM)五種不同鈣濃度培養基種植的台灣金線連T2品系植株,對高鈣及低鈣的環境都表現出相當強的耐受性,栽培4個月後,其外部形態及生長速度並無明顯差異,直至6個月後,0Ca培養下的植株始出現頂芽褐化凋萎的缺鈣病徵。植株根部及葉部的鈣含量,與培養基內的鈣濃度呈現正相關,但於前2個月的培養期間,葉部可溶性草酸與不可溶性草酸的含量皆不隨著環境中的鈣濃度變動,葉內結晶細胞的密度也維持穩定。至4個月後新葉及不定根中的結晶密度才隨鈣濃度出現顯著的差異,並於16Ca老葉中產生大量另一形態的細小結晶,但所有處理下老葉中的針束狀結晶密度仍維持不變。以上結果顯示此物種在因應環境中鈣離子濃度改變時,初期並不反映在結晶的含量上,然而後期新生組織中針束狀結晶的含量亦會開始隨提供的鈣濃度變動,故於此物種中結晶仍有調控鈣離子濃度的功能。另根據前人的研究,得知T1品系植株於栽培2個月後,新葉的結晶密度即開始產生變動,故可知不同栽培品系間的生理特性會有所差異。 | zh_TW |
| dc.description.abstract | In this study the distribution and the ultrastructural changes of raphide crystal idioblasts in roots of Anoectochilus formosanus Hay. T1 cultivars were investigated. The raphide idioblasts sporadically occurred in the third or fourth layer of cortex inside the epidermis. The development of the crystal idioblasts can be divided into six stages: (1) crystal idioblast initiation, (2) crystal chamber formation, (3) crystal growth, (4) ER expanded, (5) mucilage accumulation, and (6) crystal idioblast maturation. The crystal initials formed central vacuole earlier than the neighboring ordinary cortex cells. In the central vacuole the electron-dense materials gradually formulated the crystal chambers and then the crystals accumulated in these chambers. When the chambers were saturated with crystals, mucilage appeared around the crystals. The mucilage gradually permeated into the central vacuole and formed an electron-dense mucilage sheath outside the crystal needles. Eventually, lamellaed crystal sheaths came into existent, and the transverse view of the crystals turned from tetragon to hexagon or octagon. During the entire process, abundant organells were found in the cytoplasm of the crystal cells indicating an higher cellular physiological activities. The crystalloplastids showed diverse morphology. In the stage of mucilage accumulation, multiple lobes were found along the margin of the crystalloplastid. Certain secretory materials surrounded the crstalloplastid and formed an unfilled region. There were some ER spreaded outside this region, thus the crystalloplastid may be related to the formation of the mucilage. In the early and late stages, the crystalloplastids contain a few starch grains which were not found in the crystal idioblasts of leaves and that in the other species. The results of histochemical tests showed that the differentiating crystalloplastids contained little polysaccharide and protein, excluded lipid. The amorphous electron-dense materials and crystal chambers mainly contained protein. In the mature crystal cells, the mucilage matrix contained little polysaccharide and protein. The components of mucilage sheaths were mainly proteins. Using the stable isotope ratios (δ13C) analysis for consulting the results of previous studies, it is confirmed that when the plants of Anoectochilus formosanus Hay. cultivated without plastic bags covered, they are typically CAM plants and were obviously grown slowly. However, those cultivated with plastic bags covered were carrying out both the C3 and CAM CO2 fixation pathways. The plants might obtain from CO2 from the air and the culture substratum, and in the daytime they decomposed the organic acids stored in the vacuoles and meanwhile captured CO2 from the air, thus increased the growth rate. With supplying five different calcium ion concentration medium: 0 Ca (0 Mm), 1/8 Ca (0.19 mM), 1 Ca (1.50 mM), 8 Ca (11.97 mM) and 16 Ca (23.94 mM), the T2 cultivars showed strong endurance in both high Ca and low Ca conditions. After four months of cultured period, little difference in morphology and growth rate have been observed. Until the sixth month, the apical buds of those plants grown under 0 Ca condition turned to brown and died. Total Ca contents of the roots and leaves were correlated to the calcium ion concentrations in the medium. However, during the first two months, the soluble and insoluble oxalate contents and the crystal density of the leaves of all the cultured conditions remained stable, which meant they didn't vary with the calcium ion concentrations in the medium. After four months, the raphide crystal density of the newly formed leaves and of the roots began to vary with the calcium ion concentration. And the 16 Ca cultured old leaves produced a large number of tiny crystals with various morphology. The results showed that when the calcium ion concentration in the environment varied, at the beginning, the crystal density remained stable. However, in the newly formed organs, it changed. Therefore, for Anoectochilus formosanus Hay. T2 cultivars, the formation of calcium oxalate crystals in the cells may still have the function of regulating cellular calcium ion concentration. Comparing to the previous study on the T1 cultivars, it is interested to note that somewhat different regulating strategy in calcium crystal formation in these two cultivars. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
| dc.description.tableofcontents | 目錄……………………………………………………………………………………………Ⅰ 附圖目錄………………………………………………………………………………………Ⅱ 附表目錄………………………………………………………………………………………Ⅱ 圖版目錄………………………………………………………………………………………Ⅲ 中文摘要………………………………………………………………………………………Ⅳ 英文摘要………………………………………………………………………………………Ⅵ 壹、前言………………………………………………………………………………………1 貳、材料與方法………………………………………………………………………………6 一、材料……………………………………………………………………………………6 二、台灣金線連根部針束狀結晶異形細胞之分佈與發育………………………………6 三、台灣金線連之光合作用型之鑑定……………………………………………………8 四、台灣金線連瓶苗於不同鈣離子濃度培養基中的種植試驗…………………………9 參、結果………………………………………………………………………………………13 一、台灣金線連根部針束狀結晶異形細胞的分佈與發育………………………………13 二、台灣金線連之光合作用型之鑑定……………………………………………………17 三、台灣金線連瓶苗於不同鈣離子濃度培養基中的種植試驗…………………………17 I、外表觀察………………………………………………………………………………17 Ⅱ、全鈣量測定……………………………………………………………………………18 Ⅲ、可溶性草酸含量測定…………………………………………………………………18 Ⅳ、不溶性草酸含量測定…………………………………………………………………18 Ⅴ、結晶密度測定…………………………………………………………………………21 圖版標示說明………………………………………………………………………………24 肆、討論………………………………………………………………………………………57 一、根部針束狀結晶異形細胞的分佈與發育……………………………………………57 二、光合作用型之鑑定……………………………………………………………………62 三、培養基中不同鈣濃度的種植試驗……………………………………………………64 伍、引用文獻…………………………………………………………………………………68 附錄一…………………………………………………………………………………………80 附錄二…………………………………………………………………………………………82 | |
| dc.language.iso | zh-TW | |
| dc.title | 台灣金線連根部結晶異形細胞之發育及不同鈣離子濃度的供應對其鈣結晶的影響 | zh_TW |
| dc.title | The development of calcium crystal idioblasts in the root of Anoectochilus formosanus Hay. and the effects of the supplying calcium ion concentrations on its calcium crystals | en |
| dc.date.schoolyear | 91-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 96 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
