請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75400
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chia-Wei Lee | en |
dc.contributor.author | 李家威 | zh_TW |
dc.date.accessioned | 2021-07-01T08:13:01Z | - |
dc.date.available | 2021-07-01T08:13:01Z | - |
dc.date.issued | 2003 | |
dc.identifier.citation | Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Broek, D., Bartlett, R., Crawford, K. & Nurse, P. (1991) Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349, 388-393. Burton J.L., Solomon M.J. (2001) D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381-95. Davis ES, Pletcher A, Fox D, Chestnut B, Shakes DC, Golden A. (2002) Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I. Genetics 160, 805-813. Diffley, J.F. (1996) Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819-2830. Fang, G., Yu, H., and Kirschner, M. W. (1998) Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Mol. Cell 2, 163-171. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408,325-330. Glotzer, M., Murray, A.W., and Kirschner, M.W. (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138. Gonczy P., Echeverri C., Oegema K., Coulson A., Jones S. J., Copley R. R., Duperon J., Oegema J., Brehm M., Cassin E., Hannak E., Kirkham M., Pichler S., Flohrs K., Goessen A., Leidel S., Alleaume A. M., Martin C., Ozlu N., Bork P., Hyman A. A. (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336. Hagting, A., den Elzen, N., Vodermaier, H. C., Waizenegger, I. C., Peters, J.-M., and Pines, J. (2002) Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125-1137. Harper, J. W., Burton, J. L., and Solomon, M. J. (2002) The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179-2206. Heichman, K.A., Roberts, J.M. (1994). Rules to replicate by. Cell 79, 557-562. Hendrickson, C., Meyn, M. A., III, Morabito, L., and Holloway, S. L. (2001) The KEN box regulates Clb2 proteolysis in G1 and at the metaphase-to-anaphase transition. Curr. Biol. 11,1781-1787. Ishimi, Y. (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508-24513. King R. W., Peters J. M., Tugendreich S., Rolfe M., Hieter P., Kirschner M. W. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279-288. Kotani, S., Tanaka, H., Yasuda, H., and Todokoro, K. (1999) Regulation of APC Activity by Phosphorylation and Regulatory Factors. J. Cell Biol. 146, 791-800. Labib, K., Tercero, J.A., Diffley, J.F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643-1647. Lee, J.K. and Hurwitz, J. (2001) Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc. Natl. Acad. Sci. USA 98, 54-59. McGarry T. J., Kirschner M.W. (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93,1043-1053. Nishitani, H., Lygerou, Z. (2002) Control of DNA replication licensing in a cell cycle. Genes to Cells 7, 523-534. Nurse, P. (1994) Ordering S phase and M phase in the cell cycle. Cell 79, 547-550. Page, A. M., and Hieter, P. (1999) The anaphase-promoting complex: New subunits and regulators. Annu. Rev. Biochem. 68, 583-609. Peters, J. M. (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931-943. Pfleger, C. M., and Kirschner, M. W. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655-665. Roe J. L., Rivin C. J., Sessions R. A., Feldmann K. A., Zambryski P. C. (1993) The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75, 939-50. Roe, J.L., Nemhauser, J.L. and Zambryski, P.C. (1997) TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis. Plant Cell, 9, 335-353. Rudner, A. D., and Murray, A. W. (2000) Phosphorylation by Cdc28 Activates the Cdc20-dependent Activity of the Anaphase-promoting Complex. J. Cell Biol. 149, 1377-1390. Sillj?, H.H.W., Takahashi, K., Tanaka, K., Van Houwe, G. and Nigg, E.A. (1999) Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. EMBO J. 18, 5691-5702. Schwacha, A. and Bell, S.P. (2001) Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cells 8, 1093-1104. Sillj?, H.H.W. and Nigg, E.A. (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr. Biol.11, 1068-1073. Stillman, B. (1996) Cell cycle control of DNA replication. Science 274, 1659-1664. Tabara H., Grishok A., Mello C. C. (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282, 430-431. Tavernarakis N., Wang S. L., Dorovkov M., Ryazanov A., Driscoll M. (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet. 24, 180-183. Timmons L., Court D. L., Fire A. (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263,103-112. Timmons L., Fire A. (1998) Specific interference by ingested dsRNA. Nature 395, 854. Usui, T., Yoshida, M., Abe, K., Osada, H., Isono, K. & Beppu, T. (1991) Uncoupled cell cycle without mitosis induced by a protein kinase inhibitor, K-252a. J. Cell Biol. 115,1275-1282. Wohlschlegel J. A., Dwyer B.T., Dhar S.K., Cvetic C., Walter J.C., Dutta A. (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290, 2309-12. Wuarin, J. & Nurse, P. (1996) Regulating S phase: CDKs, licensing and proteolysis. Cell 85, 785-787. Yanagi K., Mizuno T., You Z., Hanaoka F. (2002) Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem. 277, 40871-40880. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75400 | - |
dc.description.abstract | 遺傳訊息穩定的增殖必須仰賴生物體整個基因庫在細胞週期中一次又一次成功地複製。DNA複製許可系統(DNA replication licensing system)負責防止DNA在該次細胞週期中重複複製。因此,複製許可(replication licensing)對於細胞週期的進行是相當重要。我最近確認了一個基因cepku,可能作用於防止DNA的重複複製。我們的初步結果顯示cepku(RNAi)突變株會在早期胚胎發育過程中死亡,而且造成DNA含量的增加和異常漲大的細胞核性狀。cePKU的表現受細胞週期所調控,cePKU在有絲分裂末期開始表現,歷經G1期、S期、G2期、有絲分裂的前期持續表現。在有絲分裂的中期和後期,cePKU會受APC的調節而被分解。本篇報告主要討論cePKU的特性分析,推論cePKU可能是複製許可系統的負面調控因數(negative regulator),期望有助於我們對DNA複製許可系統的瞭解。 | zh_TW |
dc.description.abstract | The maintenance of eukaryotic genome integrity requires the complete and accurate duplication of the entire genome once in every cell cycle. The events are monitored by the DNA replication licensing system which is responsible for preventing DNA re-replication in one cell cycle. Accordingly, replication licensing is very important for cell cycle progression. I have recently identified a gene, named cepku, that might prevent DNA re-replication. My preliminary results reveal that cepku (RNAi) mutants are arrested during early embryonic development and cause the phenotype of abnormally large nuclei and the increase of DNA content. cePKU is a cell-cycle- regulated kinase, which is degraded via anaphase promoting complex (APC) pathway during mitotic phase of the cell cycle. I propose that cePKU negatively regulates DNA re-replication and that cePKU destruction during metaphase and anaphase permits replication in proceeding cell cycle. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:13:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………………………………………1 Abstract………………………………………………………………………………………………2 Introduction Tousled-like kinase…………………………………………………………………………………3 DNA replication licensing…………………………………………………………………………3 Proteolysis via Anaphase Promoting Complex pathway………………………………………5 Result cepku is similar to human TLK1 and TLK2………………………………………………………6 cePKU protein sequence structure………………………………………………………………6 Depletion of cePKU Causes Embryonic Lethality and Nuclear Enlargement………………7 cepku Is a Cell-Cycle-Regulated Protein Kinase……………………………………………8 cepku is Degraded by the APC Pathway…………………………………………………………9 Discussion cePKU negatively regulates DNAre-replication………………………………………………11 cePKU is degraded during mitotic metaphase…………………………………………………12 Model for cePKU's Role in inhibiting DNAre-replication…………………………………13 Experimental procedure……………………………………………………………………………14 Acknowledgement………………………………………………………………………………………16 Reference………………………………………………………………………………………………17 Figures…………………………………………………………………………………………………23 | |
dc.language.iso | zh-TW | |
dc.title | cePKU的特性分析:cePKU作用於線蟲DNA複製的控制 | zh_TW |
dc.title | Characterization of cePKU that functions in DNA re-replication control in Caenorhabditis elegans | en |
dc.date.schoolyear | 91-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 35 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。