Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author洪新棠zh_TW
dc.date.accessioned2021-07-01T08:12:55Z-
dc.date.available2021-07-01T08:12:55Z-
dc.date.issued2003
dc.identifier.citation王昭閔,徐慶霖,邱繡河。2002。堆肥嗜高溫菌種之分解酵素篩選。第五屆畜牧資源回收再利用研討會論文集。中華民國。p48-58。
餘旭勝。2001。微生物多樣性指標在加速分解蔬果加工廢棄物處理應用上之研究。國立台灣大學園藝學研究所碩士論文。臺北。
吳中興。2000。果菜市場有機廢棄物堆肥化之規劃與建立。行政院環境保護署。中華民國。張政雄,陳□竹,楊盛行。2002。基質種類、堆積時間及深度對溶磷菌相之影響。第五屆畜牧資源回收再利用研討會論文集。中華民國。p13-33。
陳國樹,林彥行,詹峰順,魏嘉碧,楊盛行。1998。高溫菌於堆肥製作上之應用。微生物與生物技術及農業生產。中華民國微生物學學會。臺北。p375-390。
陳麗鈴。1999。以演化類源分類的方式來探討細菌分類。菌種保存及研究簡訊。財團法人食品工業發展研究所。41:6-9。
黃國青。1998。禽畜糞堆肥處理技術輔導手冊。台灣省畜牧廢棄資源再生利用協會編印。中華民國。
楊美桂,陳淵銓。1995。普通微生物學實驗。藝軒圖書出版社。臺北。
鄭閔魁。2000。生物除磷反應槽中可分離微生物菌相多樣性的探討。國立中央大學生命科學研究所碩士論文。中壢。
Amann, R. I., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and insitu detection of indivisual microbial cells without cultivation. Microbiol. Rev 59:143-169.
Beffa, T., M. Blanc, and M. Aragno. 1996a. Obligately and facultatively futotrophic, sulfur- and hydrogen-oxidizing thermophilic bacteria isolated from hot com posts. Arch. Microbiol 165:34-40.
Beffa, T., M. Blanc, P.-F. Lyon, G. Vogt, M. Marchiani, J. L.Fischer, and M. Aragno. 1996b. Isolation of Thermus strains from hot compost (60 to 80℃). Appl. Environ. Microbiol 62:1723-1727.
Blanc, M., L. Marilley, T. Beffa, and M. Aragno. 1999. Thermophilic bacterial communities in hot composts as revealed by probable number counts and molecular (16S rDNA) methods. FEMS Microbiol. Ecol 28:141-149.
Bruggemann, J., J. R. Stephen, Y.-J. Chang, S. J. Macnaughton, G. A. Kowalchuk, E. Kline, and D. C. White. 2000. Competitive PCR-DGGE analyses of bacterial mixtures an internal standard and an appraisal of template enumeration accuracy. J. Microbiol. Methods 40:111-123.
Calderon, F. J., L. E. Jackson, K. M. Scow, and D. E. Rolston. 2000.Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biol. Biochem 32:1547-1559.
Carpenter, E. J., S. Lin, and D. G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol 66:4514-4517.
Casamayor, E.O., C. Pedros-Alio, G. Muyzer, and R. Amann. 2002. Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl. Environ. Microbiol 68:1706-1714.
Cho, J.-C., and S.-J. Kim. 2000. Increase in bacterial community diversity in subsurface aquifer receiving livestock wastewater input. Appl. Environ. Microbiol 66:956-965.
Daffonchio, D., S. Bonn, G. Frova, P. L. Manachini, and C. Sorlini. 1998. PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus Iicheniformis. Int. J. Syst. Bacteriol 48:107-116.
Dees, P. M., and W. C. Ghiorse. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequence from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol 35:207-216.
Derakshani, M., T. Lukow, and W. Liesack. 2001. Novel bacterial lineages at the (sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl. Environ. Microbiol 67:623-631.
Dojka, M.A., J. K. Harris, and N. R. Pace. 2000. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl. Environ. Microbiol 66:1617-1621.
Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000. Assessment of microbial diversity in four southwestern United States soil by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol 66:2943-2950.
Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined population inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol 62:340-346.
Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg. 1994. Methods for General and Molecular Bacteriology. ASM news (Wash.) p690-692.
Grobkopf, R., P. H. Janssen, and W. Liesack. 1998. Diversity and structure of the methanogentic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol 64:960-969.
Gutell, R. R., H. F. Noller, and C. R. Woese. 1986. Higher order structure in ribosomal RNA. EMBO J 5:1111-1113.
GuteIl, R. R., N. Larsen, and C. R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev 58:10-26.
Head, I. M., J. R. Saunders, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol 35:1-21.
Hengstmann, U., K.-J. Chin, P. H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of gene encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol 65:5050-5058.
Hennig, W. 1966. Phylogenetic Systematics. Univ. Illinois Press: Urbana. Herrmann, R. F., and J. F. Shann. 1997. Microbial community changes during the corn posting of municipal solid waste. Microb. Ecol 33:78-85.
Hulls, D. M., M. W. Allard, and M. M. Miyamoto. 1993. Analysis of DNA sequence data: phylogenetic inference. Molecular Evolution: Producing the Biochemical Data (Academic Press: San Diego). p456-487.
Holt, J. G., editor. 1984. Bergey’s manual of systematic bacteriology. WILLIAMS & WILKINS. Baltimore 1:140, 162-167.
Holt, J. G., editor. 1984. Bergey’s manual of systematic bacteriology. WILLIAMS & WILKINS. Baltimore 2:1104, 1122-11129, 1133.
Hori, H., and S. Osaawa. 1979. Evolutionary change in 5S rRNA species. Proc. Natl. Acad. Sci. U. S. A. 76:381-385.
Klamer, M., and E. Baath. 1998. Microbial community dynamics during composting of straw material using phospholipid fatty acid analysis. FEMS Microbiol. Ecol 27:9-12.
Kowalchuk, G. A., Z. S. Naoumenko, P. J. L. Derikx, A. Felske, J. R. Stephen, and I. A. Arkhipchenko. 1999. Molecular analysis of ammonia-oxidizing bacteria of the β subdivision of the class proteobacteria in compost and com posted materials. Appl. Environ. Microbiol 65:396-403.
Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soil of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol 63:3614-3621.
Lewin, B. 2000. Gene Ⅶ. Oxford University Press. New York. p139-164.
Liu, W.-T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl. Environ. Microbiol 63:4516-4522.
Ludwig, W., R. Amann, E. M. Romero, W. Schonhuber, S. Bauer, A. Neef, and K. H. Schleifer. 1998. rRNA based indentification and detection systems for rhizobia and other bacteria. Plant soil 204:1-19.
Lyon, P.-F., T. Beffa, M. Blanc, G. Auling, and M. Aragno. 2000. Isolation and characterization of highly thermophilic xylanolytic Thermus thermophilus strains from hot compost. Can. J. Microbiol 46:1029-1035.
Macnaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y-J Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. AppI. Environ. Microbiol 65:3566-3574.
Marsh, T. L., P. Saxman, J. Cole, and J. Tiedje. 2000. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Environ. Microbiol 66:3616-3620.
Marteinsson, V. T., S. Hauksdottir, C. F. V. Hobel, H. Kristmannsdottir, G. O. Hreggvidsson, and J. K. Kristjansson. 2001. Phylogenetic diversity analysis of subterranean hot spring in Iceland. Appl. Environ. Microbiol 67:4242-4248.
Neefs, J.-M., Y. V. de Peer, P. D. Rijk, S. Chapelle, and R. D. Wachter. 1993. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21:3025-3049.
Nelson, K. E., I. T. Paulsen, J. F. Heidelberg, and C. M. Fraser. 2000. Status of genome projects for nonpathogenic bacteria and archaea. Nat. Biotechnol 18:1049-1054.
Olsen, D. J. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40: 337-365.
Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734-740.
Peters, S., S. Koschinsky, F. Schwieger and C. C. Tebbe. 2000. Succession of microbiol communities during hot composting as detected by PCR-single-strand-conformation-
polymorphism-based genetic profiles of small-subunit rRNA genes. Appl. Environ. Microbiol 66:330-936.
Priscu, J. C., E. E. Adams, W. B. Lyons, M. A. Voytek, D. W. Mogk, R. L. Brown, C. P. McKay, C. D. Takacs, K. A. Welch, C. F. Wolf, J. D. Krishtein, and R. Avci. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141-2147.
Purkhold, U., A. Pommerening-Roser, S. Jurestschko, M. C. Schmid, H.-P. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizer based on comparative 16S rRNA and amoA sequence analysis implications for molecular diversity surveys. Appl. Environ. Microbiol 66:5368-5382.
Regnena, T., J. Burton, T. Matsuki, K. Munro, M. A. Simon, R. Tnaka, K. Watanabe, and G. W. Tannock. 2002. Identification, detection, and enumeration of human Bifidobacterium species by PCR targeting the transabldolase gene. Appl. Environ. Microbiol 68:2420-2427.
Rhee, S.-K., C. O. Jeon, J.-W. Bae, K. Kim, J. J. Song, J.-J. Kim, S.-G. Lee, H.-I. Kim, S.-P. Hong, Y.-H. Choi, S.-M. Kim, and M.-H. Sung. 2002. Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6:57-64.
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Gel electrophoresis of DNA. Molecular Cloning. Cold Spring Harbor Laboratory Press. 2:6.36-6.45.
Schmalenberger, A., F. Schwieger, and C. C. Tebbe. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl. Environ. Microbiol 67:3557-3563.
Shi, T., R. H. Reeves, D. A. Gilichinsky, and E. I. Friedmann. 1997. Characterization of viable bacteria from Siberian permafrost by 16S rDNA. Appl. Environ. Microbiol 33:169-179.
Small, J., D. R. Call, F. J. Brockman, T. M. Straub, and D. P. Chandler. 2001. Direct detection of 16S rRNA in soil extracts, by using oligonucleotide microarrays. Appl. Environ. Microbiol 67:4708-4716.
Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K.-H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol 63:2884-2896.
Speksnijder, A. G. C., G. A. Kowalchuk, S. D. Jong, E. Kline, J. R. Stephen, and H. J. Laanbroek. 2001. Microvariation artifacts introduced by PCR and cloning for closely related 16S rRNA gene sequence. Appl. Environ. Microbiol 67:469-472.
Stahl, D. J. Lane, G. J. Olsen, and N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ri bosom al RNA sequences. Science 224: 409-411.
Strom, P. F. 1985. Effect of temperature on bacterial species diversity in thermophilic solid-waste com posting. Appl. Environ. Microbiol 50:899-905.
Strom, P. F. 1985. Identification of thermophilic bacteria in solid-waste composting. Appl. Environ. Microbiol 50:906-913.
Teske, A., C. Wawer, G. Muyzer, and N. B. Ramsing. 1996a. Distribution of sulfate-reducing bacteria in a stratified Fjord (Manager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol 62:1405-1415.
Teske, A., P. Sigalevich, Y. Cohen, and G. Muyzer. 1996b. Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol 62:4210-4215.
Ueda, K., M. Ohno, K. Yamamoto, H. Nara, Y. Mori, M. Shimada, M. Hayashi, H. Oida, Y. Trashima, M. Nagata, and T. Beppu. 2001. Distribution and diversity of symbiotic thermophilies, Symbiobacterium thermophilum and related bacteria, in natural environment. Appl. Environ. Microbiol 67:3779-3784.
Ueno, V., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol 57:555-562.
Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173:697-703.
Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173:697-703.
Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol 173:697-703.(與上一條文獻重復)
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev 51:221-227.
Woese, C. R., O. Kandler, and M. L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA. 87:4576-4579.
Woese, C. R., R. Gutell, R. Gupta, and H. Noller. 1983. Detailed analysis of the higher order structure of 16S like ribosomal ribonucleic acids. Microbiol. Rev 47:621-669.
Yu, Z., and W. W. Mohn. 1999. Isolation and characterization of thermophilic bacteria capable of degrading dehydroabietic acid. Can. J. Microbiol. 45:513-613.
Yu, Z., and W. W. Mohn. 2001. Bacterial diversity and community structure in all aerated lagoon revealed by ribosomal intergenic spacer analysis and 16S rDNA Sequence. Appl. Environ. Microbiol 67:1565-1574.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75378-
dc.description.abstract微生物活動為堆肥品質良□之決定性因素之一。國內目前許多具規模的堆肥生產場,對其使用的微生物組成並不明暸,因此本實驗擬建立一個堆肥中微生物蒐集、鑑定的基礎模式,利用較為精確的判定方式,將台灣本土化菌種蒐集保存起來,希望能發現出各種堆肥中所存在的高溫優勢菌種,用以改善有機堆肥生產的效益。
本實驗利用台糖虎尾堆肥廠的蔗渣堆肥,及果菜市場廢棄物與花卉市場廢棄物堆肥,從中取樣探討其高溫狀態下的微生物相。實驗分三方面同時進行:從堆肥中取樣之後,一方面進行取得菌種之冷凍保存;一方面進行菌株外觀觀察、革蘭氏染色觀察,以及生理代謝測試;另一方面針對16S核醣體核醣核酸基因序列(16S rRNA gene;16S rDNA)進行聚合酵素鏈鎖反應(polymerase chain reaction, PCR),將所得的產物以四種不同的限制核酸內切酵素處理,進行限制內切酵素片段多型性分析(restriction fragment length polymorphism, RFLP),即所謂之 Amplified rDNA restriction analysis (ARDRA),再將所得到之菌株進行分組,更進一步自各組中選擇一代表菌株,作16S rDNA定序,從資料庫中比對出相似菌種,進而瞭解其親緣關係。
所得菌株共412株,比對生理特性及ARDRA之後,可以分為24組,其中最大一組數目為137株。分離菌株多為Gram positive或是Gram variable (96%),全部是桿狀菌,大部份可分解澱粉(65%),且具有還原硝酸鹽之能力(91%)。由ARDRA分析的pattern雖呈現高度的變異,但從16S rDNA定序結果可知大部份分離之菌株為Bacillus licheniformis及其相關菌種,其中少部份為Pseudomonas屬之菌株,此結果與生理特性分析相符合。本實驗發現高溫堆肥中存在的優勢菌種為Bacillus Iicheniformis,及Bacillus相關菌屬。本實驗結果不僅有助於台灣本土堆肥的微生物族群研究,同時也對本土雅肥中微生物族群多樣性的瞭解有所益助。
zh_TW
dc.description.abstractMicrobial activity is one important factor of compost process. To understand microbial community in compost was one of topics interested to people of many large fields of compost. In this study, we tried to establish a basic model in collection and identification of the microorganisms of compost, and tried to find the superior bacterial strains in the hot compost in order to improve the quality of compost.
In this experiment, we studied the thermophilic microbial community in the compost composed of bagasse, waste of fruit/food market, and waste of flower market in Huwei compost plant of Taiwan Sugar Corporation in Yunlin County, Taiwan (R.O.C.). The experiments included three parts: preserving the isolated bacteria strains, Gram’s staining, morphology observation and physiological test, and restriction fragment length polymorphism (RFLP) analysis of 16S rRNA gene (16S rDNA). The isolated bacterial strains were grouped based on these analyses, and a phylogenetic tree was constructed on the selected strain from each group.
We isolated 412 strains, and divided they into 24 groups. The numbers of the largest group is 137. All of the isolates were rod, and most of them were Gram positive or Gram variable (96%). Most of isolated strains were able to hydrolysis starch (65%) and able to reduce nitrate (91%). The isolates displayed different patterns in amplified rDNA restriction analysis (ARDRA), but most of them belonged to Bacillus spp. and related strains (Bacillus licheniformis and Bacillus sonorensis). Few of isolates were Pseudomonas spp. The morphology and physiological characteristics of isolated strains supported the ARDRA. Our study not only established the local microbial community in Taiwan, but also would improve the benefit of high-quality compost.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:55Z (GMT). No. of bitstreams: 0
Previous issue date: 2003
en
dc.description.tableofcontents中文摘要…………………………………Ⅰ
英文摘要…………………………………Ⅱ
縮寫列表…………………………………Ⅲ
第一章 前言…………………………………1
第二章 材料與方法…………………………………9
第三章 結果與討論…………………………………22
第四章 結論…………………………………26
參考文獻…………………………………27
圖表…………………………………34
dc.language.isozh-TW
dc.title堆肥中高溫非厭氧性細菌相之研究zh_TW
dc.titleThe studies of Thermophilic,Non-anaerobic Bacterial Community of Compostsen
dc.date.schoolyear91-2
dc.description.degree碩士
dc.relation.page49
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved