請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75359
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chih-Ying Chao | en |
dc.contributor.author | 趙芷瑩 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:50Z | - |
dc.date.available | 2021-07-01T08:12:50Z | - |
dc.date.issued | 2003 | |
dc.identifier.citation | 李文靜.2002.蝴蝶蘭屬植物核醣體RNA基因的選殖及實質定位.國立台灣大學植物科學研究所碩士論文.
高玉馨.2001.以5S rDNA基因間空白區序列探討蝴蝶蘭屬植物之親緣關係.國立台灣大學植物科學研究所碩士論文. 黃建豪.1999.蝴蝶蘭兩種重複性DNA序列的分離與定性.國立台灣大學植物科學研究所碩士論文. Aceto, S., P. Caputo, S. Cozzolino, L. Gaudio, and A. Moretti. 1999. Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol. Phyl. Evol. 13: 67-76. Adams, S. P., I. J. Leitch, M. D. Bennett, M. W. Chase, and A. R. Leitch. 2000. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am. J. Bot. 87: 1578-1583. Appels, R., C. Driscoll, and W. J. Peacock. 1978. Heterochromatin and highly repeated DNA sequences in Rye (Secale cereale). Chromosoma. 70: 67-89. Arends, J. C. 1970. Cytological observation on genome homology in eight interspecific hybrids of Phalaenopsis. Genetica. 41: 88-100. Ausubel, F. M., R. Brent, D. D. More, J. G. Sediman, J. A. Smith, and K. Struhl. 1989. Current Protocols in Molecular Biology. Greene Publishing Associates and Wile-Interscience. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard. 82: 247-277. Buckler, E. S. Ⅳ and T. P. Holtsford. 1996. Zea systematics: ribosomal ITS evidence. Mol. Biol. Evol. 13: 612-622. Campbell, C. S., M. F. Wojciechowski, B. G. Baldwin, L. A. Alice, and M. J. Donoghue. 1997. Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex(Rosaceae). Mol. Biol. Evol. 14: 81-90. Cox, A. V., A. M. Pridgeon, V. A. Albert, and M. W. Chase. 1997. Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): nuclear rDNA ITS sequences. Plant Syst. Evol. 208: 197-223. Cronn, R. C., X. Zhao, A. H. Paterson, and J. F. Wendel. 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42: 685-705. Dressler, R. L. 1993. Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783-791. Fitch, W. M. 1977. On the problem of discovering the most parsimonious tree. Am. Nat. 111: 223-257. Fu, Y. M., W. H. Chen, W. T. Tsai, Y. S. Lin, M. S. Chyou, and Y. H. Chen. 1997. Phylogenetic studies of taxonomy and evolution among wild species of Phalaenopsis by random amplified polymorphic DNA markers. Rept. Taiwan Sugar Res. Inst. 157: 27-42. Gawel, N. J. and R. L. Jarret. 1991. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9: 262-266. Goodspeed, T. H. 1954. The genus Nicotiana. Waltham, Massachusetts, Chronica, Botanica. Graur, D. and W. H. Li. 2000. Fundamentals of Molecular Evolution Second edition. Sinauer Associates, Inc., Publishers. Sunderland, Massachusetts. Hamby, R. K. and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. Soltis, P. S. and J. J. Doyle(eds). In: Molecular Systematics of Plants. Hapman and Holl, New York. pp. 50-91. Hegde, S. G., J. Valkoun, and J. G Waines. 2000. Genetic diversity in wild wheats and goat grass. Theor. Appl. Genet. 101: 309-316. Kao, Y. Y., S. B. Chang, T. Y. Lin, C. H. Hsieh, Y. H. Chen, W. H. Chen, and C. C. Chen. 2001. Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Ann. Bot. 87: 387-395. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. Kreike, C. H., J. R. A. de Koning, and F. A. Krens. 1990. Nonradioactive detection of single-copy DNA-DNA hybrids. Plant Mol. Biol. Rep. 8: 172-179. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software, Arizona State University, Tempe, Arizona, USA. Lapitan, N. L. V. 1992. Organization and evolution of higher plant nuclear genomes. Genome 35: 171-181. Lin, S., H. C. Lee, W. H. Chen, C. C. Chen, Y. Y. Kao, Y. M. Fu, Y. H. Chen, and T. Y. Lin. 2001. Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. J. Amer. Soc. Hort. Sci. 126: 195-199. Marshall, J. A., S. Knapp, M. R. Davey, J. B. Power, E. C. Cocking, M. D. Bennett, and A. V. Cox. 2001. Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor. Appl. Genet. 103: 1216-1222. Panaud, O., G. Magpantay, and S. McCouch. 1993. A protocol for nonradioactive DNA labeling and detection in the RFLP analysis of rice and tomato using single-copy probes. Plant Mol. Biol. Rep. 11: 54-59. Porebski, S., L. O. Bailey, and B. R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8-15. Potter, D., F. Gao, P. E. Bortiri, S. H. Oh, and S. Baggett. 2002. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Syst. Evol. 231: 77-89. Roger, S.. O. and A. J. Bendich. 1987. Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9: 509-520. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4: 406-425. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Sang, T., .D. J. Crawford, and T. F. Stuessy. 1995. Documentation of reticulate evolution in peonies(Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. USA. 92: 6813-6817. Sanger, F. 1981. Determination of nucleotide sequences in DNA. Science. 214: 1205-1210. Sasanuma, T., N. T. Miyashita, and K. Tsunewaki. 1996. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. intra- and interspecific variations of five Aegilops Sitopsis species. Theor. Appl. Genet. 92: 928-934. Shindo, K., and H. Kamemoto. 1963. Karyotype analysis of some species of Phalaenopsis. Cytologia. 28: 390-398. Sweet, H. R. 1980. The genus Phalaenopsis. Day Printing Crop., Pomon, California. Tosto, L. S. and H. E. Hopp. 2000. Suitability of AFLP markers for the study of genomic relationships within the Oxalis tuberosa alliance. Plant Syst. Evol. 223: 201-209. Yu, Y. L. and T. Y. Lin. 1997. Construction of phylogenetic tree for Nicotiana species based on RAPD markers. J. Plant Res. 110: 187-193. Wen, J. and E. A. Zimmer. 1996. Phylogeny and biogeography of Panax L. (the Ginseng Genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol. Phyl. Evol. 6: 167-177. Westneat, D. F., W. A. Noon, H. K. Reeve, and C. F. Aquadro. 1988. Improved hybridization conditions for DNA “fingerprints” probed with M13. Nucleic Acids Res. 16: 4161. Woodard, J. W. 1951. Some chromosome numbers in Phalaenopsis. Am. Orchid Soc. Bull. 20: 356-358. Zhang, W., L. J. Qu, H. Gu, W. Gao, M. Liu, J. Chen, and Z. Chen. 2002. Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Theor. Appl. Genet. 104: 1099-1106. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75359 | - |
dc.description.abstract | 17?18S-5.8S?25?28S rDNA為聚集型的重複性序列,每個重複單位包含轉錄區,ITS及IGS。其中ITS序列長度短,在物種間差異很大,且其兩側具高度保留性的轉錄區很容易擴增,因此常用於物種間親緣關係的分析。本實驗以P.aphrodite之18S和26S基因轉錄區設計一對專一性的引子,利用聚合酵素連鎖反應擴增28種蝴蝶蘭及1種朵麗蘭植物之ITS序列,分析種間的親緣關係。由con-NJ樹可將植物區分成6群,其中第2群包括P.stobartiana和P.parishii,第3群包括P.lued-pulehra、P.pallens和P.fasciata,皆與5S rDNA之IGS序列分析結果一致。另外P.amboinensis、P.venosa和P.violacea屬於同一群,與核型觀察及5S rDNA之IGS序列分析結果一致。而P. equestris、P.amabilis、P.aphrodite、P.sanderiana、P.stuarttana和P.schilleriana具小型染色體的蝴蝶蘭區分為三群,與5S rDNA之IGS序列分析的結果並不一致,可能是同一種植株因種源不同,導致ITS序列呈多型性所致。 | zh_TW |
dc.description.abstract | l7?l8S-5.8S-25S rDNA are organized into clusters of tandem repeat with each repeat consisting of transcribed regions, two small ITS, and an IGS. Because the small size and the presence of highly conserved sequences flanking each of the two ITS make this region easy to amplify. The ITS sequences are variable among species and useful for phylogenetic analyses. In this study, ITS of 28 Phalaenopsis species were amplified by the polymerase chain reaction, cloned, and sequenced. Phylogenetic analysis of ITS consensus sequences could be divided into six groups. Among them the second group containing P.stobartiana and P.parishii and the third group containing P. lued-pulchra, P. pallens, and P. fasciata were consistent with IGS of 5S rDNA analysis. Similarly, P. amboinensis, P. venosa and P. violacea were also grouped together. Whereas P. equestris, P. mabilis, P. aphrodite, P. sanderiana, P. stuartiana, and P. schilleriana were divided into three groups, it might be the result of polymorphism in ITS sequences from different source of plants. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………………………………………………………………i 英文摘要………………………………………………………………………………………………………………………ii 簡寫字對照表…………………………………………………………………………………………………………………iii 壹、前言………………………………………………………………………………………………………………………1 貳、材料與方法 一、植物材料……………………………………………………………………………………………………………7 二、DNA的抽取 …………………………………………………………………………………………………………7 三、ITS序列的擴增 ……………………………………………………………………………………………………8 四、探針的標定…………………………………………………………………………………………………………9 五、選殖體的篩選………………………………………………………………………………………………………10 六、ITS序列之定序及分析 ……………………………………………………………………………………………13 七、親緣關係分析………………………………………………………………………………………………………13 參、結果 一、185-5.85-26S rDNA之ITS序列的選殖及定序……………………………………………………………………15 二、蝴蝶蘭屬植物ITS序列的比較 ……………………………………………………………………………………15 三、親緣關係之分析……………………………………………………………………………………………………16 肆、討論………………………………………………………………………………………………………………………19 伍、參考文獻…………………………………………………………………………………………………………………22 圖次 圖1、依蝴蝶蘭P.aphrodlte 18S-5.8S-26S rDNA的基因序列設計兩個引子之位置及序列………………………28 圖2、蝴蝶蘭屬植物和一種朵麗蘭屬植物之ITS序列選殖體的篩選…………………………………………………29 圖3、P.lowii五個選殖體序列之對齊排列……………………………………………………………………………30 圖4、P.stobartiana五個選殖體序列之對齊排列……………………………………………………………………31 圖5、P.fuscata五個選殖體序列之對齊排列…………………………………………………………………………32 圖6、P.viridis五個選殖體序列之對齊排列…………………………………………………………………………33 圖7、P.amabilis五個選殖體序列之對齊排列 ………………………………………………………………………34 圖8、P.aphrodite七個選殖體序列之對齊排列………………………………………………………………………35 圖9、P.sanderiana五個選殖體序列之對齊排列 ……………………………………………………………………36 圖10、P.stuartiana五個選殖體序列之對齊排列……………………………………………………………………37 圖11、P.schilleriana五個選殖體序列之對齊排列…………………………………………………………………38 圖12、P.equestris 五個選殖體序列之對齊排列……………………………………………………………………39 圖13、P.celebensis五個選殖體序列之對齊排列……………………………………………………………………40 圖14、P.amboinensis五個選殖體序列之對齊排列 …………………………………………………………………41 圖15、P.gigantea六個選殖體序列之對齊排列………………………………………………………………………42 圖16、P.micholitzii六個選殖體序列之對齊排列 …………………………………………………………………43 圖17、P.venosa五個選殖體序列之對齊排列…………………………………………………………………………44 圖18、P.modesta五個選殖體序列之對齊排列 ………………………………………………………………………45 圖19、P.maculata六個選殖體序列之對齊排列………………………………………………………………………46 圖20、P.mariae六個選殖體序列之對齊排列…………………………………………………………………………47 圖21、P.pallens五個選殖體序列之對齊排列 ………………………………………………………………………48 圖22、P.fasciata六個選殖體序列之對齊排列………………………………………………………………………49 圖23、P.lueddemanniana五個選殖體序列之對齊排列………………………………………………………………50 圖24、P.lued-pulchra五個選殖體序列之對齊排列…………………………………………………………………51 圖25、P.violacea五個選殖體序列之對齊排列………………………………………………………………………52 圖26、P.sumatrana五個選殖體序列之對齊排列 ……………………………………………………………………53 圖27、P.cornu-cervi五個選殖體序列之對齊排列 …………………………………………………………………54 圖28、P.mannii五個選殖體序列之對齊排列…………………………………………………………………………55 圖29、P.parishii五個選殖體序列之對齊排列………………………………………………………………………56 圖30、P.lobbii五個選殖體序列之對齊排列…………………………………………………………………………57 圖31、Doritis pulcherrima五個選殖體序列之對齊排列 …………………………………………………………58 圖32、P.equestris 五個選殖體序列之對齊排列……………………………………………………………………39 圖33、28種蝴蝶蘭與一種朵麗蘭屬植物的ITS一致性序列之對齊排列 ……………………………………………59 圖34、蝴蝶蘭屬植物之ITS-NJ樹………………………………………………………………………………………66 圖35、蝴蝶蘭屬植物ITS序列的659個最佳MP樹之一…………………………………………………………………67 圖36、蝴蝶蘭屬植物ITS一致性序列之親緣關係樹 …………………………………………………………………68 圖37、P.amabilis、P.aphrodite和P.lueddemanniana三種蝴蝶蘭分別由不同植株所得ITS序列之NJ樹………69 表次 表1、本實驗所使用的28種蝴蝶蘭原生種與一種朵麗蘭植物 ………………………………………………………70 表2、PCR反應混合液的成分……………………………………………………………………………………………72 表3、不同蝴蝶蘭植物進行PCR的黏合溫度……………………………………………………………………………73 表4、接合反應之混合液成分 …………………………………………………………………………………………74 表5、本實驗所使用的28種蝴蝶蘭及一種朵麗蘭屬植物之代號及篩選之選殖體數目 ……………………………75 表6、本實驗所使用的28種蝴蝶蘭與一種朵麗蘭屬植物之ITS1,5.8S及ITS2序列長度和GC含量之比較 ………76 表7、蘭科植物ITS區域長度及GC含量之比較…………………………………………………………………………78 表8、被子植物ITS1和ITS2長度及GC含量之比較 ……………………………………………………………………79 表9、18S-5.8S-26S rDNA之ITS序列在各種植物種內及種種間的相似度 …………………………………………81 附錄 附錄1、29種植物選殖體間的相似度 …………………………………………………………………………………83 附錄2、蝴蝶蘭屬植物ITS序列的矩陣距離……………………………………………………………………………88 | |
dc.language.iso | zh-TW | |
dc.title | 以rDNA之ITS序列探討蝴蝶蘭屬植物之親緣關係 | zh_TW |
dc.title | Phylogeny of Phalaenopsis species based on ITS sequences of rDNA | en |
dc.date.schoolyear | 91-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 93 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。