請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75357
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Li Kao | en |
dc.contributor.author | 高立 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:49Z | - |
dc.date.available | 2021-07-01T08:12:49Z | - |
dc.date.issued | 2003 | |
dc.identifier.citation | Anonymous. 2001. Fisheries yearbook Taiwan area 2000. Taiwan Fisheries Bureau, Taiwan.
Bartlett, S.E. and W.S. Davidson. 1991. Identification of Thunnus Tuna species by the polymerase chain reaction and direct sequence analysis of their mitochondrial cytochrome b gene. Can. J. Fish. Aquat. Sci., 48, 309-317. Bembo, D.G., G.R. Carvalho, N. Cingolani, E. Amen, G. Giannetti, and T.J.Pitcher. 1996. Allozymic and morphometnic evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters. Mar. Biol., 126, 529-538. Bermingham, E., S. S. McCafferty and A. P. Martin. 1997. Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: T. D. Kocher and C. A. Stepien (eds.), Molecular Systematics of Fishes. Academic Press, New York. pp. 113-128. Bernardi, G. 1997. Molecular phylogeny of the Fundulidae (Teleostei, Cyprinodontiformes) based on the cytochrome b gene. In: T. D. Kocher and C. A. Stepien (eds.), Molecular Systematics of Fishes. Academic Press, New York. pp. 189-198. Bookstein, F. L. 1991. Morphometric Tools for Landmark Data. Cambridge University Press, New York, pp. 435. Bookstein, F. L., B. Chernoff, R. L. Elder, J M. Humphries, Jr., G. R. Smith, and R. E. Strauss. 1985. Morphometrics in Evolutionary Biology. Academy of Natural Sciences of Philadelphia. pp. 277. Borsa, P. 2002. Allozyme, mitochondrial-DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biol. J. Linn. Soc., 75, 261-269. Carpenter K. E. and G. D. Johnson. 2002. A phylogeny of sparoid fishes (Perciformes, Percoidei) based on morphology. Ichthyol. Res., 49, 114-127. Chern, Y. T. and W. N. Tzeng. 1993. Feeding strategy of Encrasicholina punctifer and Stolephorus insularis larvae in the estuary of Tanshui River, Taiwan —I. Ontogenetic dietary shifts and morphological correlation. J. Fish. Soc. Taiwan, 20, 313-328. (In Chinese) Chern, Y. T. and W. N. Tzeng. 1994. Feeding strategy of two larval anchovies, Encrasicholina punctfer and Stolephorus insularis in the estuary of Tanshui River, Taiwan —II. Prey selective and interspecific feeding competition. J. Fish. Soc. Taiwan, 21, 33-48. (In Chinese) Chiu, T. S. and C. S. Chen. 2001. Growth and temporal variation of two Japanese anchovy cohorts during their recruitment to the East China Sea. Fish. Res., 53, 1-15. FAO Yearbook. 2002. Fishery statistics. Capture production, 2000, Vol. 90/1. FAO Fisheries Series No 60, Rome, pp. 617. Grant, W. S. and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lesson for conservation. J. Hered., 89, 415-426. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95-98. Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond., 270, 313-321. Hedgecock, D., E. S. Hutchinson, G. Li, F. L. Sly, and K. Nelson. 1989. Genetic and morphometric variation in the Pacific sardine, Sardinops sagax caerulea: comparisons and contrasts with historical data and with variability in the Northern anchovy, Engraulis modax. Fish. Bull., 87, 653-671. Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Ann. Rev. Ecol. Syst., 18, 23-42. Hillis, D. M. and J. J. Wiens. 2000. Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. In: J. J. Wiens (ed.), Phylogenetic Analysis of Morphological Data. Smithsonian institution press, London, pp.1-19. Houde, E. D., S. Almatar, J. C. Leak, and C. E. Dowd. 1986. Ichthyoplankton abundance and diversity in the western Arabian Gulf. Kuwait Bull. Mar. Sci., 8, 107-393. Huang, J. B. and T. S. Chiu. 1996. Daily growth and length distribution of larval Japanese anchovy (Engraulisjaponica) in the neritic water of northeastern Taiwan. Acta Zool. Taiwanica, 7(1), 29-41. Hung, S. J. 1995. Histological study on nutritional status of larval Japanese anchovy (Engraulis japonica T. & S.). M. Sc. Dissertation, National Taiwan University, Taiwan, 63 pp. Inoue, J.G., M. Miya, K. Tsukamoto, and M. Nishida. 2000. Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus. Fish. Sci., 66, 924-932. Inoue, J.G., M. Miya, K. Tsukamoto, and M. Nishida. 2001. Complete mitochondrial DNA sequence of the Japanese anchovy Engraulis japonicus. Fish. Sci., 67, 828-835. J?r?me, M. C. Lemarie, J. M. Bautista, J. Fleurence, and M. Etienne. 2003. Molecular phylogeny and species identification of sardines. J. Agric. Food Chem., 51, 43-50. Kao, T. P. and T. S. Chiu. 1993. Morphological analysis of geographic variation of Encrasicholina heteroloba in the waters NE and SW of Taiwan. Acta Zool. Taiwanica, 4(2), 81-88. Klingenberg, C. P. 1996. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciforms: Nototheniidae). Biol. J. Linn. Soc., 59, 143-177. Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. P??bo, F.X. Villablanca, and A.C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA, 86, 6196-6200. Lee, M. A., K. T. Lee, and G. Y. Shiah. 1995. Environmental factors associated with the formation of larval anchovy fishing grounds in the coastal waters of southwest Taiwan. Mar. Biol., 121, 621-625. Lee, M. A., S. C. Chou, K. T. Lee, and P. C. Lee. 1996. Distribution of fish larvae in relation to pycnocline in the coastal waters of Tan-Shui, Taiwan. J. Fish. Soc. Taiwan, 23, 195-206. Lydeard, C. and K. J. Roe. 1997. The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among actinopterygian fishes. In: T. D. Kocher and C. A. Stepien (eds.), Molecular Systematics of Fishes. Academic Press, New York., pp. 285-303. Maack, G. and M. R. George. 1999. Contributions to the reproductive biology of Encrasicholina punctifer Fowler, 1938 (Engraulidae) from West Sumatra, Indonesia. Fish. Res., 44, 113-120. Magoulas, A., N. Tsimenides, and E. Zouros. 1996. Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: The case of the European anchovy (Engraulis encrasicolus). Mol. Biol. Evol., 13(1), 178-190. Marcus, F. L. and M. Corti. 1996. Overview of the new, or geometric morphometrics. In: L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice (eds.), Advances in Morphometrics. Plenum Press, New York., pp. 1-13. Mayden, R. L., W. J. Rainboth, and D. G. Buth. 1991. Phylogenetics systematics of the cyprinid genera Mylopharodon and Ptychocheilus: comparative morphometry. Copeia, 1991, 819-834. McGowan, M. F. and F. H. Berry. 1984. Clupeiforms: development and relationships. In: H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr., and S. L. Richardson (eds.), Ontogeny and Systematics of Fishes. Spec. Publ. No. 1, Amer. Soc. Ichthyol. Herpetol., pp. 108-126. Meyer, A. 1994. Shortcomings of the cytochrome b gene as a molecular marker. Trends Ecol. Evol., 9, 278-280. Meyer, A., T. D. Kocher, P. Basasibwaki, and A. C. Wilson. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 347, 550-553. M?ller, P. R. and P. Gravlund. 2003. Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12S rDNA. Mol. Phylogenet. Evol., 26, 369-388. Moritz, C., T. E. Dowling, and W. M. Brown. 1987. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann. Rev. Ecol. Syst., 18, 269-292. Naylor, G. J. P., A. P. Martin, E. G. Mattison, and W. M. Brown. 1997. Interrelationships of Lamniform sharks: testing phylogenetic hypotheses with sequence data. In: T. D. Kocher and C. A. Stepien (eds.), Molecular Systematics of Fishes. Academic Press, New York., pp.199-218. Nelson, G. J. 1967. Gill arches of teleostean fishes of the family Clupeidae. Copeia, 1967, 389-399. Nelson, G. J. 1970. The hyobranchial apparatus of teleostean fishes of the family Engraulidae and Chirocentridae. Am. Mus. Novit., 2410, 1-30. Nelson, G. J. 1983. Anchoa argentivittata with notes on other eastern Pacific anchovies and the Indi-Pacific genus Encrasicholina. Copeia, 1983, 48-54. Nelson, J. S. 1994. Fishes of the World. 3rd ed. John Wiley and Sons, Inc., pp.116-121. Powles, H. and D. F. Markle. 1984. Identification of larvae. In: H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr., and S. L. Richardson (eds.), Ontogeny and Systematics of Fishes. Spec. Publ. No. 1, Amer. Soc. Ichthyol. Herpetol., pp. 31-33. Rozas, J. and R. Rozas. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15, 174-175. Schneider, S., D. Roessli, and L. Excoffier. 2000. Arlequin: a Software for Population Genetic Data Analysis 2.000. University of Geneva, Switzerland. Sebastio, P., P. Zanelli, and T.M. Neri. 2001. Identification of anchovy (Engraulis encrasicholus L.) and Gilt sardine (Sardinella aurita) by polymerase chain reaction, sequence of their mitochondrial cytochrome b gene, and restriction analysis of polymerase chain reaction products in semipreserves. J. Agric. Food Chem., 49, 1194-1199. Shen, S. C., S. C. Lee, K. T. Shao, H. K. Mok, C. T. Chen, and C. H. Chen. 1993. Fishes of Taiwan. Dept. Zool., Natl. Taiwan Univ., 960 pp. Spanakis, E., N. Tsimenides, and E. Zouros. 1989. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionian seas. J. Fish Biol., 35, 417-437. StatSoft, Inc. 2001. STATISTICA (data analysis software system), version 6. (www.statsoft.com) Tsai, C. F., P. Y. Chen, M. A. Lee, K. Y. Hsia, and K. T. Lee. 1996. Effects of fishing effort on stock size and catch of larval anchovy in coastal waters of southwestern Taiwan. Fish. Res., 28, 71-83. Tudela, S. 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fish. Res., 42, 229-243. Tzeng, W. N. and Y. T. Wang. 1992. Structure, composition and seasonal dynamics of larval and juvenile fish community in the mangrove estuary of Tanshui River, Taiwan. Mar. Biol., 113,481-490. Tzeng, W. N. and Y. T. Wang. 1993. Hydrography and distribution dynamics of larval and juvenile fishes in the coastal waters of Tanshui River estuary, Taiwan, with reference to estuarine larval transport. Mar. Biol., 116, 205-217. Tzeng, W. N. and Y. T. Wang. 1997. Movement of fish larvae with tidal flux in the Tanshui River Estuary, northern Taiwan. Zool. Stud., 36, 179-185. Wang, S. B. and P. P. Hwang. 1992. Occurrence of fish larvae and juveniles in Tan-Shui estuary, northern Taiwan. J. Fish. Soc. Taiwan, 19, 173-182. Wang, Y. T. and W. N. Tzeng. 1997a. A quick method to identify Engraulid fish larvae in the Tanshui River estuary of northern Taiwan. Acta Zool. Taiwanica, 8(2), 103-119. Wang, Y. T. and W. N. Tzeng. 1997b. Temporal succession and spatial segregation of clupeoid larvae in the coastal eaters of the Tanshui River Estuary, northern Taiwan. Mar. Biol., 129, 23-32. Wiley, E. O. and R. H. Hagen. 1997. Mitochondrial DNA sequence variation among the sand darters (Percidae: Teleostei). In: T. D. Kocher and C. A. Stepien (eds.), Molecular Systematics of Fishes. Academic Press, New York. pp. 75-96. Wilson, A. C., R. L. Cann, S. M. Carr, M. George, U. B. Gyllensten, K. M. Helm-Bychowski, R. G. Higuchi, S. R. Palumbi, E. M. Prager, R. D. Sage, and M. Stoneking. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26, 375-400. Wongratana, T. 1980. Systematics of clupeoid fishes of the Indo-Pacific region. Ph. D. thesis. Faculty of Science, University of London, 432 pp. Wongratana, T. 1983. Diagnosis of 24 new species and proposal of a new name for a species of Indo-Pacific clupeoid fishes. Japan. J. Ichthyol., 29, 385-407. Wongratana, T. 1987. Two new species of anchovies of genus Stolephorus (Engeaulidae), with a key to species of Engraulis, Encrasicholina, and Stolephorus. Am. Mus. Novit., 2867, 1-8. Xia, X. and Z. Xie. 2001. DAMBE: Data analysis in molecular biology and evolution. J. Hered., 92, 371-373. Young, S. S. and T. S. Chiu. 1994. Ovarian maturation of Japanese anchovy, Engraulis japonica T. & S., from I-Lan Bay, Northeastern Taiwan. Zool. Stud., 33(4), 302-309. Young, S. S., C. C. Chen, and T. S. Chiu. 1992. Resource characteristics of young herring-like fish in the I-Lan Bay area —Fishing season, major species and size variation. J. Fish. Soc. Taiwan, 19, 273-281. Young, S.S., T.S. Chiu, and S.C. Shen. 1994. A revision of the Family Engraulidae (Pisces) from Taiwan. Zool. Stud., 33(3), 217-227. Young, S. S., T. S. Chiu, and S. S. Shen. 1995. Taxonomic description and distribution of larval anchovy (Engraulidae) occurred in the waters around Taiwan. Acta Zool. Taiwanica, 6(1), 33-60. Yu, P. T. and T. S. Chiu. 1994. Fishery target species of larval anchovy fishery in the western central Taiwan. J. Fish. Soc. Taiwan, 21(3), 227-239. Zelditch, M. L., D. L. Swiderski, and W. L. Fink. 2000. Discovery of phylogenetic characters in morphometric data. In: J. J. Wiens (ed.), Phylogenetic Analysis of Morphological Data. Smithsonian institution press, London, pp. 37-83. Zhu, D., B. G. M. Jamieson, A. Hugall, and C. Moritz. 1994. Sequences evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaeniidae). Mol. Bol. Evol., 11, 672-683. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75357 | - |
dc.description.abstract | 全球鯷科(Engraulidae)魚類共有16個屬139種,台灣附近海域計有5屬12種:黃鯽(Setipinna tenuifilis)、芝蕪綾鯷(Thryssa chefuensis)、杜氏綾鯷(T. dussumieri)、漢氏綾鯷(T. hamiltonii)與長頷綾鯷(T. setirostris)、日本鯷魚(Engraulis japonicus)、刺公鯷(Encrasicholina punctifer)、異葉公鯷(E. heteroloba)、孔氏小公魚(Stolephorus coommersonii)、印度小公魚(S. indicus)、島嶼小公魚(S. insularis)與魏氏小公魚(S. waitei)。鯷魚之仔稚魚,為台灣沿岸漁業的重要漁獲,主要出現在西北海域(淡水、桃園、新竹)、東北海域(宜蘭、梗枋、大溪)以及西南海域(枋寮、林園)。 實務上,鯷科之物種鑑定有相當程度之困難,因而在漁業資源管理上亦成棘手之態。既存之檢索,有許多特徵具有相當大的重疊,目前尚無利用單一特徵可供分辨兩個物種之簡便、確實方法,均需要結合多個內部構造之特徵來做參考。此外,各發育時期亦會對些許外部型態特徵造成影響,有些成體特徵,在幼體卻闕如。因此,本研究擬利用形態學之特徵點法,將外部特徵數值化,以統計分析抽取變異(variance)中之對比,做為形貌(shape)因數,俾進一步取其徵值製作檢索表。在電子影像存取便捷的今日,本法將有其相當之延伸性。 研究結果顯示,利用腹鰭起點、臀鰭起點、臀鰭終點與上顎骨長度之幾何關係可區分所實驗的八個種類,其確率皆達95%以上;因此,亦據這些數值化的特徵,整理成檢索表。對應的分子資料之群內均質性,亦肯定事前物種鑑定無誤。最複雜的三物種:日本鯷、刺公鯷、異葉公鯷,經節錄401bp之粒線體DNA胞色素b基因部分序列顯示:鹼基組成在物種間具有顯著差異;種內的變異以日本鯷為最大,而刺公鯷與異葉公鯷具有可比較的大小,分析其類緣關係,得到不同屬的刺公鯷與日本鯷關係比較相近。由於在群內關係上,日本鯷種內的變異大,異於其他兩種,以及刺公鯷與異葉公鯷在多型性方面仍比較相近,因此推論刺公鯷與異葉公鯷來自同一個祖先,在種化歷史上較日本鯷來的年輕。 | zh_TW |
dc.description.abstract | Engraulidae is composed of 16 genera and 139 species. There are 5 genera with 12 species reported from the coastal waters of Taiwan; Setipinna tenuifilis, Thryssa chefuensis, T dussumieri, T hamiltonii, T setirostris, Engraulis japonica, Encrasicholina punctifer, E. heteroloba, Stolephorus coommersonii, S. indicus, S. insularis, and S. waitei. In the coast of Taiwan, engraulid larvae are common recruits, which support traditional larval fisheries practiced at NW, NE and SW respectively. Identification of engraulid species is not an easy thing, especially as early as larval stages. This situation not only applies to studies on their natural history, but also hinders the prospects for reasonable fishery management. In this study, supported by within group genetic homogeneity, I arrange to analyze engraulid morphometrics, and aim to construct a quantitative key to species in a shape plane. In total, 406 effective samples were used this study, i.e., Engraulis japonicus 37, Encrasicholina heteroloba 96, E. punctifer 60, Thryssa chefuensis 8, T. dussumieri 58, Stolephorus insularis 65, and Setipinna tenuifilis 50. An addition 26 sardine of Dussumieria elopsoides was also incorporated into analysis for out. group reference. In morphometrics, the first three components explain 85.92% of the total variance, and using qualitative comparison of triangles indicate that landmarks at P4 (last insertion of dorsal fin rays crosses the body), P7 (last insertion of anal fin rays crosses the body), P8 (first insertion of anal fin rays crosses the body), P9 (first insertion of pelvic fin rays crosses the body), and P13 (most posterior point of maxillary) are valid for species identification. A section of 401 bases were truncated from cytochrome b gene for comparison on the most complicate species complex. Engraulis japonicus, Encrasicholina heteroloba, and E. punctifer. Site by site comparison indicated 118 (29.43%) variable positions, among which 113 (28.18%) can be informative, of which 11(9.73%) located at codon 1, and 102 sites (90.3%) at codon 3. The fractions of A:T:C:G and autapomorphic sites could be useful factors in specific identification. It is apparent that E. japonicus population had higher, distinctive diversity than the rest two species. However, comparable values are found with E. heteroloba and E. punctifer. In phylogenetic analysis, an aberrant relationship is obtained with lowest inter. specific distance found between E. japonicus and E. punctifer. My results improve the extant identification procedure of engraulid species and open up a window for further review of their phylogeny. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2003 | en |
dc.description.tableofcontents | Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . i 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . v 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Review on the status of engraulid species . . . . . . . . . . . . . . 1 1.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Taxonomic status . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Proposed phylogenetic relationship . . . . . . . . . . . . . . . . . . 3 1.1.4 Problems in identification of larvae . . . . . . . . . . . . . . . . . . 4 1.2 Advantage of molecular tools . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 The molecular studies in engraulid fishes . . . . . . . . . . . . . 7 1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Morphometric . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Cytochrome b gene . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 DNA Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 PCR Amplification . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1 Morphometric . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.2 Cytochrome b gene . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Morphometrics . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.2 Inter.specific relationship . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Cytochrome b gene . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Population parameters and inter.specific relationship . . . . 18 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Morphometric phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Molecular analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.4 Engraulid phylogeny . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 References . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure legend . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure . . . . . . . . . . . . . . . . . . . . . . . . . 45 | |
dc.language.iso | zh-TW | |
dc.title | 探討台灣鯷科魚類之形態與分子性狀差異並推論其類緣關係 | zh_TW |
dc.title | Diversity and phylogeny of anchovies from Taiwanese waters -- by morphometrics and mtDNA cytochrome b gene | en |
dc.date.schoolyear | 91-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 62 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。