請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75355
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chia-Hung Yen | en |
dc.contributor.author | 顏嘉宏 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:49Z | - |
dc.date.available | 2021-07-01T08:12:49Z | - |
dc.date.issued | 2001 | |
dc.identifier.citation | 1. Clark EA, Ledbetter JA. How B and T cells talk to each other Nature. 1994 367:425-8. 2. Germain RN. MHC-dependent antigen processing and peptide presentation: providing ligands for Tlymphocyte activation. Cell. 1994 76:287-99. 3. Malissen B, Malissen M. Functions of TCR and pre-TCR subunits: lessons from gene ablation. Curr Opin Immunol. 1996 8:383-93. 4. Christopher ER. Adaptors and Molecular Scaffolds in Immune Cell Signaling. Cell. 1999 96:5-8. 5. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 302:575-81. 6. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature. 1988 334:395-402. 7. Hiom K, Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell. 1998 1:1011-9. 8. Lewis SM. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv Immunol. 1994 56:27-150. 9. Chothia C, Boswell DR, Lesk AM. The outline structure of the T-cell alpha beta receptor. EMBOI 1988 7:3745-55. 10. Claverie JM, Prochnicka-Chalufour A, Bougueleret L. Implications of a Fablike structure for the T-cell receptor. Immunol Today. 1989 10:10-4. 11. Chien YH, Davis MM. How alpha beta T-cell receptors ‘see’ peptide/MHC complexes. Immunol Today. 1993 14:597-602. 12. Hong SC, Chelouche A, Lin RH, Shaywitz D, Braunstein NS, Glimcher L, Janeway CA Jr. An MHC interaction site maps to the amino-terminal half of the T cell receptor alpha chain variable domain. Cell. 1992 69:999-1009. 13. Jorgensen JL, Esser U, Fazekas de St Groth B, Reay PA, Davis MM. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature. 1992 355:224-30. 14. Fields BA, Ober B, Malchiodi EL, Lebedeva MI, Braden BC, Ysern X, Kim JK, Shao X, Ward ES, Mariuzza RA. Crystal structure of the V alpha domain of a T cell antigen receptor. Science. 1995 270:1821-4. 15. Bentley GA, Boulot G, Karjalainen K, Mariuzza RA. Crystal structure of the beta chain of a T cell antigen receptor. Science. 1995 267:1984-7. 16. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2. Nature.1987 329:506-12. 17. Stem U, Wiley DC. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure. 1994 2:245-51. 18. Stern U, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. 1994 368:215-21. 19. Hennecke J, Carfi A, Wiley DC. Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBOJ 2000 19:5611-24. 20. Hedrick SM, Engel I, McElligott DL, Fink PJ, Hsu ML, Hansburg D, Matis LA. Selection of amino acid sequences in the beta chain of the T cell antigen receptor. Science. 1988 239:1541-4. 21. Lai MZ, Jang YJ, Chen LK, Gefter ML. Restricted V-(D)-J junctional regions in the T cell response to lambda-repressor. Identification of residues critical for antigen recognition. J Immunol. 1990 144:4851-6. 22. Kuby J, editor. Immunology. 3rd, p458-503. W. H. Freeman and Company express. 23. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K. Clonal expansions of CD8(+) T cells dominate the I cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000 192:393-404. 24. Goronzy JJ, Zettl A, Weyand CM. T cell receptor repertoire in rheumatoid arthritis. Int Rev Immunol. 1998 17:339-63. 25. Yoon JW, Jun HS. Cellular and molecular roles of beta cell autoantigens, macrophages and T cells in the pathogenesis of autoimmune diabetes. Arch Pharm Res. 1999 22:437-47. 26. Brosnan CF, Raine CS. Mechanisms of immune injury in multiple sclerosis. Brain Pathol. 1996 6:243-57. 27. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973 180:871-2. 28. Lindstrom J, Shelton D, Fujii Y Myasthenia gravis. Adv Immunol. 1988 42:233-84. 29. Wang ZY, Karachunski PT, Howard JF Jr, Conti-Fine BM. Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cells. Neurology 1999 52:484-97. 30. Zhang GX, Ma CG, Xiao BG, Bakhiet M, Link H, Olsson T. Depletion of CD8+T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. Eur J Immunol. 1995 25:1191-8. 31. Lindstrom JM. Acetylcholine receptors and myasthenia. Muscle Nerve. 2000 23:453-77. 32. Hohlfeld R, Wekerle H. The role of the thymus in myasthenia gravis. Adv Neuroimmunol. 1994 4:373-86. 33. Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol. 1996 157:3752-60. 34. Graus YF, de Baets MH, Parren PW. Berrih-Aknin S, Wokke J, van Breda Vriesman PJ, Burton DR. Human anti-nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus-derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J Immunol. 1997 158: 1919-29. 35. 新光醫院 神經科編,肌無力手冊 36. Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol. 1991 139:995-1008. 37. Oshima M, Ashizawa T, Pollack MS, Atassi MZ. Autoimmune T cell recognition of human acetylcholine receptor: the sites of T cell recognition in myasthenia gravis on the extracellular part of the alpha subunit. Eur J Immunol.1990 20:2563-9. 38. Zoda TE, Krolick KA. Antigen presentation and T cell specificity repertoire in determining responsiveness to an epitope important in experimental autoimmune myasthenia gravis. J Neuroimmunol. 1993 43:131-8. 39. Koop BF, Rowen L, Wang K, Kuo CL, Seto D, Lenstra JA, Howard S, Shan W, Deshpande P, Hood L. The human T-cell receptor TCRAC/TCRDC (C alpha/C delta) region: organization, sequence, and evolution of 97.6 kb of DNA. Genomics. 1994 19:478-93. 40. 徐瑞毅,國立臺灣大學生化科學研究所碩士論文(1994) 41. 林佳芳,國立臺灣大學生化科學研究所碩士論文(1999) 42. Livak F, Schatz DG. Alternative splicing of rearranged T cell receptor delta sequences to the constant region of the alpha locus. Proc Natl Acad Sci USA.1998 95:5694-9. 43. Kraig E, Pierce JL, Clarkin KZ, Standifer NE, Currier P, Wall KA, Infante AJ. Restricted T cell receptor repertoire for acetylcholine receptor in murine myasthenia gravis. J Neuroimmunol. 1996 71:87-95. 44. Wu B, Shenoy M, Goluszko E, Kaul R, Christadoss P. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-2b strains. J Immunol. 1995 154:3603-10. 45. Hayday A, Geng L. Gamma delta cells regulate autoimmunity. Curr Opin Immunol. 1997 9:884-9. 46. Peng SL, Madaio MP, Hughes DP, Crispe IN, Owen MJ, Wen L, Hayday AC, Craft J. Murine lupus in the absence of alpha beta T cells. J Immunol. 1996 156:4041-9. 47. Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin- dependent diabetes. J Exp Med. 1996 184:2167-74. 48. Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000 18:975-1026. 49. Kaufmann SH. gamma/delta and other unconventional T lymphocytes: what do they see and what do they do Proc Natl Acad Sci USA. 1996 93:2272-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75355 | - |
dc.description.abstract | 重症肌無力(Myasthenia Gravis, MG)是一種自體免疫疾病,導致病狀的主因是由於體內產生乙醯膽鹼受體專一的自我抗體(autoantibody),阻礙神經肌肉間的訊息傳導,最後造成肌肉無力現象。由實驗動物模型(EAMG)的研究發現必須在有CD4+T細胞存在的情況下,實驗動物才會產生MG症狀,而在人類病患,大部分病人同時伴隨有胸腺(T細胞發育之處)異常症狀(胸腺瘤或胸腺增殖)。因此,T細胞與MG的產生必然有一定的關係。雖然如此,但重症肌無力真正的致病原因仍是待解之謎。 在T細胞接受器(TCR)上V-J接交處的CDR3區域,一向是被認為與T細胞所辨識的抗原性質有關。本論文中,我們取得7位重症肌無力病患與3位對照者的周邊血液淋巴細胞(PBL)。合成對Vα/Vδ、Cα/Cδ基因序列專一之引子,利用RT-PCR/PCRs技術,分析他們α/δ-chain上V基因的使用情形;並進一步對其中的3個患者與1個對照者,做TCR上CDR3區域的DNA定序分析。 首先,我們觀察到在TCR αchain上,Vα14、Vα15這兩個V基因在Jα基因的使用上,似乎有著完全不同的選擇性,且這種使用上的偏好似乎與個人HLA的haplotype無關。 另一方面,我們在兩位病人的樣本中,Vδ2-Jδ-Cδ的基因組合,觀察到一段相似的胺機酸motif;雖然他們所使用的Jδ基因並不相同,但是在VDJ junction部分的序列幾乎完全相同(只有一個胺機酸不同,但性質相似),極有可能辨識的是性質相近的抗原片段,且可能與重症肌無力有關。而這樣的結果則似乎暗示著找到導致重症肌無力相關T細胞的可能性。 | zh_TW |
dc.description.abstract | Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibody against acetylcholine receptor (AChR). Autoantibody blocked the signal transduction between neuromuscular junction and resulted in muscle weakness. Previously studies in MG’s animal model, experimental autoimmune myasthenia gravis (EAMG), showed that CD4+ T cells are necessary for the production of antibody to AChR. In addition, most MG patients appear to have hyperplasia or thymoma in the thymus, in which T cell development occurs. Thus, it suggests a relationship between T cells and MG formation. However, the real mechanism in causing MG is still unclear. CDR3, the V-J segment junctional region of T cell receptor (TCR), was regarded as the sites contacting directly with antigen presented by MHC molecules. In this study, cDNA of peripheral blood lymphocytes (PBLs) isolated from 7MG patients and 3 healthy controls (HCs) were constructed and analyzed by PCR using V/C sequence-specific primers for TCR Vα/Vδ gene usage. Furthermore, we subcloned and sequenced the PCR products obtained from 3 patients and 1 HC to determine the nucleotide sequences of CDR3 in detail. We observed two interested features. First, the spectrum of Jα gene usage with Vα14 is very different from that with Vα15, suggesting HLA haplotype may not play a role in determining J a usage in conjunction with these two Vαs. Second, we found a similar amino acids motif between two δ chain clones isolated from two different patients. Although two different Jδ genes were used for the two clones, the amino acids sequence of VDJ junctional region are almost identical. Thus, these two clones might recognize similar antigens, and could be relevant with MG. This result suggests the possibility in finding myasthenogenic T cells and may provide an opportunity in immunotreatment for MG. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2001 | en |
dc.description.tableofcontents | 目錄. . . . . . . . . . . . . . . . . . . . . . . . . I 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . III 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . IV 縮寫表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V 1.前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l 1.1 免疫系統. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 T細胞與主要組織相容性複合體. . . . . . . . . . . . . . . . . . . l l.2.1 T細胞抗原接受器. . . . . . . . . . . . . . . . . . . . 2 l.2.2 T細胞接受器的基因座(TCR loci) . . . . . . . . . . . . . . . . . . . . . . . 2 l.2.3 T細胞接受器V(D)J基因重組. . . . . . . . . . . . . . . 2 1.2.4 T細胞接受器的多樣性. . . . . . . . . . . . . . . . . . 3 l.2.5 T細胞接受器與抗原/主要組織相容性複合體間之作用. . . . . . . . . . . 3 1.3 自體免疫. . . . . . . . . . . . . . . . . . . . 4 1.4 重症肌無力. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 神經肌肉交接處. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 EMGA(experimental autoimmune myasthenia gravis) . . . . . . . . . . . . . . 5 1.4.3 胸腺與肌無力症. . . . . . . . . . . . . . 5 1.4.4 重症肌無力與T細胞接受器. . . . . . . . . . . . . . . . . . . 5 1.5 本論文所探討的主要問題. . . . . . . . . . . . . . . . . . . . 6 2.實驗材料與方法. . . . . . . . . . . . . . . . . . 2 2.1 實驗材料. . . . . . . . . . . . . . . 8 2.2 實驗方法. . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 引子(primers)的合成. . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 T細胞受器基因重排的放大與選殖(Amplification and Cloning of T Cell Receptor-α、δ Chain Gene Rearrangements). . . . . . . . . . . . . . . . . . . 8 2.2.2.1 訊息核醣核酸(mRNA)與單股互補去氧核醣核酸(first strand cDNA)的製備. . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2.2 聚合脢鏈鎖反應(Polymerase Chain Reaction) . . . . . . . . . . . . . . . . . . 8 2.2.2.3 低熔點洋菜膠電泳分析(Low-melting Point Agarose Gel Electrophoresis) . . . . . . . . . 9 2.2.2.4 酚萃取與酒精沉澱(Phenol extraction and Ethanol precipitation) . . . . . . . . . . . . . . . . . 9 2.2.2.5 去氧核醣核酸接合反應(DNA Ligation) . . . . . . . . . . . . . . . . . . . . 9 2.2.2.6 勝任細胞(Competent cells)的製備. . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2.7 轉型作用(Transformation). . . . . . . . . . . . . . . . . . 10 2.2.2.8 質體的快速製備(mini-prep). . . . . . . . . . . . . . . . 10 2.2.3 核酸序列分析(Sequencing). . . . . . . . . . . . . . . . . . . . 11 2.2.3.1 引子的放射線標定(Primer Labeling). . . . . . . . . . . . . . . . 11 2.2.3.2 循環反應(Cycle Reaction). . . . . . . . . . . . . . . . . 11 2.2.3.3 聚丙烯胺凝膠電泳分析(Polyacrylamide Gel Electrophoresis)與自動放射顯影(Autoradiography). . . . . . 11 2.2.3.4 自動核酸序列分析(Autoradiography). . . . . . . . . . . . . . . . . 12 3.結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 V基因的使用情形. . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 J基因的使用情形. . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 J基因的使用並非隨機分佈. . . . . . . . . . . . . . . 14 3.2.2 特殊V基因與J基因的組合. . . . . . . . . . 16 3.3 CDR3的性質. . . . . . . . . . . . . . . 17 4.討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1 V基因的使用情形. . . . . . . . . . . . . . . . . . 18 4.2 J基因的使用情形. . . . . . . . . . . . . . . . . . . . . . 19 4.3 特殊V基因與J基因的組合. . . . . . . . . . . . . . . . 20 4.4 CDR3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5 δ chain T細胞接受器. . . . . . . . . . . . . . . . . . . . . 23 4.6 未來展望. . . . . . . . . . . . . . . . . . . . 23 5.參考文獻. . . . . . . . . . . . . . . . . . . . 26 圖表 表1. Table of PCR results of MG patients and healthy controls. . . . . . . . . . . . . . . . . . . 29 表2. TCRAVI4-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 30 表3. TCRAVI5-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y). . . . . . . . . 30 表4. TCRHFR-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 31 表5. TCRDVI-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 32 表6. TCRDV2-J-AC and amino acid sequences from control (H)’(L) . . . . . . . . . . . . . 31 表7. TCRDV3-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . 33 表8. TCRDV5-AJ-AC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 34 表9. TCRDVI-DJ-DC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 35 表10. TCRDV2-DJ-DC and amino acid sequences of clones from MG patient(C) and (Y) . . . . . . . . . 36 表11. TCRDV3-DJ-DC and amino acid sequences of clones from MG patient (Y). . . . . . . . . . . . . 36 表12. TCRDV5-DJ-DC and amino acid sequences of clones from MG patient (Y). . . . . . . . . . . . . 37 表13. DV2-J-AC胺基酸序列比較表. . . . . . . . . . . . 37 表14. CDR3序列整理(一). . . . . . . . . . . . . 38 表15.CDR3序列分析整理(二). . . . . . . . . . . . . 39 表16. CDR3胺基酸序列比較表. . . . . . . . . . . . 39 圖1.A AJ usage of each V gene of patient MG-C. . . . . . . . . . . 40 圖1.B AJ usage of each V gene of patient MG-Y . . . . . . . . . 41 圖1.C AJ usage of each V gene of patient MG-D. . . . . . . . . . . 42 圖1.D AJ usage of each V gene of Healthy Control HC-A. . . . 43 圖2. AJ usage of patients (MG-C, MG-Y, MG-D) and healthy control (HC-A) . . . . . . . . . . . 44 圖3. AJ gene usage for each V gene. . . . . . . . . . . 45 圖4. AJ usage of patient MG-D. . . . . . . . . . . 46 圖5. Charge distribution within the CDR3 region of TCR sequence from MG patients and healthy control. . . . . . . . . 47 附錄一. . . . . . . . . . . 48 附錄二. . . . . . . . . . . 49 | |
dc.language.iso | zh-TW | |
dc.title | 重症肌無力病人的T細胞接收器α/δ鏈基因使用情形之研究 | zh_TW |
dc.title | The Study of TCR α/δchain Gene Usage in Myasthenia Gravis Patients | en |
dc.date.schoolyear | 90-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 58 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。