Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7534
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉
dc.contributor.authorMei-Yi Chenen
dc.contributor.author陳媺易zh_TW
dc.date.accessioned2021-05-19T17:45:49Z-
dc.date.available2021-08-02
dc.date.available2021-05-19T17:45:49Z-
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citationBaker, H. & H. Okamoto (1992) ASM metals handbook. Volume, 2, 624-631.
Baskes, M. (1992) Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 46, 2727.
--- (1997) Determination of modified embedded atom method parameters for nickel. Materials Chemistry and Physics, 50, 152-158.
Bhattacharjee, P., G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai & J.-W. Yeh (2014) Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 587, 544-552.
Callister Jr, W. D. & D. G. Rethwisch. 2012. Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons.
Cantor, B., I. Chang, P. Knight & A. Vincent (2004) Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218.
Chen, M., Y. Liu, Y. Li & X. Chen (2007) Microstructure and mechanical properties of AlTiFeNiCuCr high-entropy alloy with multi-principal elements. ACTA METALLURGICA SINICA-CHINESE EDITION-, 43, 1020.
Cheng, K.-H., C.-H. Lai, S.-J. Lin & J.-W. Yeh. 2006. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. In Annales de chimie, 723-736. Lavoisier.
Choi, W.-M., Y. H. Jo, S. S. Sohn, S. Lee & B.-J. Lee (2018) Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4, 1.
Choi, W.-M., Y. Kim, D. Seol & B.-J. Lee (2017) Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems. Computational Materials Science, 130, 121-129.
Christian, J. W. & S. Mahajan (1995) Deformation twinning. Progress in materials science, 39, 1-157.
De Boer, F., R. Boom, W. Mattens, A. Miedema, A. Niessen & D. Pettifor. 1988a. Cohesion and structure.
De Boer, F. R., W. Mattens, R. Boom, A. Miedema & A. Niessen (1988b) Cohesion in metals.
Deng, Y., C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka & D. Raabe (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 94, 124-133.
Dieter, G. E. & D. J. Bacon. 1986. Mechanical metallurgy. McGraw-hill New York.
Dong, W.-P., H.-K. Kim, W.-S. Ko, B.-M. Lee & B.-J. Lee (2012) Atomistic modeling of pure Co and Co–Al system. Calphad, 38, 7-16.
Faken, D. & H. Jónsson (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 2, 279-286.
Frenkel, D. & B. Smit. 2001. Understanding molecular simulation: from algorithms to applications. Elsevier.
Gludovatz, B., A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George & R. O. Ritchie (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345, 1153-1158.
Greer, A. L. (1993) Confusion by design. Nature, 366, 303.
Honeycutt, J. D. & H. C. Andersen (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91, 4950-4963.
Huang, K.-H. & J. Yeh (1996) A study on the multicomponent alloy systems containing equal-mole elements. Hsinchu: National Tsing Hua University.
Hull, D. & D. J. Bacon. 2001. Introduction to dislocations. Butterworth-Heinemann.
Idrissi, H., K. Renard, L. Ryelandt, D. Schryvers & P. Jacques (2010a) On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Materialia, 58, 2464-2476.
Idrissi, H., K. Renard, D. Schryvers & P. Jacques (2010b) On the relationship between the twin internal structure and the work-hardening rate of TWIP steels. Scripta Materialia, 63, 961-964.
Idrissi, H., L. Ryelandt, M. Veron, D. Schryvers & P. Jacques (2009) Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels. Scripta Materialia, 60, 941-944.
Inoue, A. (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 48, 279-306.
Jinhong, P., P. Ye, Z. Hui & Z. Lu (2012) Microstructure and properties of AlCrFeCuNix high-entropy alloys. Materials Science and Engineering: A, 534, 228-233.
Jo, Y., S. Jung, W. Choi, S. Sohn, H. Kim, B. Lee, N. Kim & S. Lee (2017) Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nature Communications, 8, 15719.
Kim, H.-K., W.-S. Jung & B.-J. Lee (2009) Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems. Acta Materialia, 57, 3140-3147.
Kim, Y.-K., W.-S. Jung & B.-J. Lee (2015) Modified embedded-atom method interatomic potentials for the Ni–Co binary and the Ni–Al–Co ternary systems. Modelling and Simulation in Materials Science and Engineering, 23, 055004.
Kim, Y.-M., Y.-H. Shin & B.-J. Lee (2009) Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Materialia, 57, 474-482.
Laplanche, G., A. Kostka, O. Horst, G. Eggeler & E. George (2016) Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 118, 152-163.
Lee, B.-J. & M. Baskes (2000) Second nearest-neighbor modified embedded-atom-method potential. Physical Review B, 62, 8564.
Lee, B.-J., M. Baskes, H. Kim & Y. K. Cho (2001a) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Physical Review B, 64, 184102.
Lee, B.-J., W.-S. Ko, H.-K. Kim & E.-H. Kim (2010) The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations. Calphad, 34, 510-522.
Lee, B.-J., J.-H. Shim & M. Baskes (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Physical Review B, 68, 144112.
Lee, B.-J., J.-H. Shim & H. M. Park (2001b) A semi-empirical atomic potential for the Fe-Cr binary system. Calphad, 25, 527-534.
Li, J., Q. Fang, B. Liu, Y. Liu & Y. Liu (2016a) Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Advances, 6, 76409-76419.
Li, Z., F. Kormann, B. Grabowski, J. Neugebauer & D. Raabe (2017a) Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Materialia, 136, 262-270.
Li, Z., K. G. Pradeep, Y. Deng, D. Raabe & C. C. Tasan (2016b) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534, 227.
Li, Z. & D. Raabe (2017) Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM, 69, 2099-2106.
Li, Z., C. C. Tasan, K. G. Pradeep & D. Raabe (2017b) A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Materialia, 131, 323-335.
Liang, X.-B., M. Wei, J.-B. Cheng, W. Zhang & B.-S. Xu (2009) Reaserch Progress in advanced materials of high-entropy alloys Journal of Materials Engineering, 12, 75-79.
Liu, Y., Y. Li, X. Chen & M. Chen (2006) High-entropy alloy with multi-principal elements state of the art. Materials Review, 4, 4-6.
Ma, S., Z. Jiao, J. Qiao, H. Yang, Y. Zhang & Z. Wang (2016) Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy. Materials Science and Engineering: A, 649, 35-38.
Ma, S., J. Qiao, Z. Wang, H. Yang & Y. Zhang (2015) Microstructural features and tensile behaviors of the Al0. 5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Materials & Design, 88, 1057-1062.
Mahajan, S., C. Pande, M. Imam & B. Rath (1997) Formation of annealing twins in fcc crystals. Acta materialia, 45, 2633-2638.
Otto, F., A. Dlouhy, C. Somsen, H. Bei, G. Eggeler & E. P. George (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61, 5743-5755.
Pradeep, K. G., C. C. Tasan, M. Yao, Y. Deng, H. Springer & D. Raabe (2015) Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering: A, 648, 183-192.
Rose, J. H., J. R. Smith, F. Guinea & J. Ferrante (1984) Universal features of the equation of state of metals. Physical Review B, 29, 2963.
Sadigh, B., P. Erhart, A. Stukowski, A. Caro, E. Martinez & L. Zepeda-Ruiz (2012) Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Physical Review B, 85, 184203.
Sanford, R. J. & R. Sanford. 2003. Principles of fracture mechanics. Prentice Hall Upper Saddle River, NJ.
Schuh, B., F. Mendez-Martin, B. Völker, E. P. George, H. Clemens, R. Pippan & A. Hohenwarter (2015) Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Materialia, 96, 258-268.
Stepanov, N., D. Shaysultanov, G. Salishchev, M. Tikhonovsky, E. Oleynik, A. Tortika & O. Senkov (2015) Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds, 628, 170-185.
Stukowski, A. & K. Albe (2010) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 18, 085001.
Stukowski, A., V. V. Bulatov & A. Arsenlis (2012) Automated identification and indexing of dislocations in crystal interfaces. Modelling and Simulation in Materials Science and Engineering, 20, 085007.
Tong, C.-J., Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau & S.-Y. Chang (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36, 881-893.
Tsai, K.-Y., M.-H. Tsai & J.-W. Yeh (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61, 4887-4897.
Tsai, M.-H. (2016) Three strategies for the design of advanced high-entropy alloys. Entropy, 18, 252.
Tsai, M.-H. & J.-W. Yeh (2014) High-entropy alloys: a critical review. Materials Research Letters, 2, 107-123.
Wu, C., B.-J. Lee & X. Su (2017) Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems. Calphad, 57, 98-106.
Wu, S., H. Yen, M. Huang & A. Ngan (2012) Deformation twinning in submicron and micron pillars of twinning-induced plasticity steel. Scripta Materialia, 67, 641-644.
Xie, L., P. Brault, A.-L. Thomann & J.-M. Bauchire (2013) AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science, 285, 810-816.
Xu, S., L. Xiong, Y. Chen & D. L. McDowell (2017) Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions. Crystals, 7, 120.
Yao, M., K. Pradeep, C. Tasan & D. Raabe (2014) A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72, 5-8.
Yeh, J.-W. (2006) Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31, 633-648.
--- (2015) Physical metallurgy of high-entropy alloys. Jom, 67, 2254-2261.
Yeh, J. W., S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau & S. Y. Chang (2004) Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303.
Yen, H.-W., M. Huang, C. Scott & J.-R. Yang (2012) Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scripta Materialia, 66, 1018-1023.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7534-
dc.description.abstract高熵合金為Yeh於1995年提出的合金系統設計理念。因為擁有優異的機械性質,高熵合金一直是學者們不斷探討的議題。然而,高熵合金微觀結構之變形機制尚未被完全釐清。因此,本研究之目的為透過原子尺度模擬,探討高熵合金材料之元素組成與微觀結構對機械性質與變形機制的影響。本研究以分子動力模擬建立高熵合金的原子模型,高熵合金材料以鈷、鉻、鐵、錳、鎳組成的Cantor Alloy系統為主。研究內容為調配鈷、鉻、鐵、錳、鎳的比例0% ~ 30%,以蒙地卡羅方法隨機均勻分布原子,搭配修正原子鑲嵌勢能(Modified Embedded-Atom Method, MEAM),設計原子尺度模擬的拉伸試驗,釐清元素組成、微觀結構等重要控制變因,如何影響Cantor Alloy系統之機械性質及變形機制。本研究亦找出調配鈷、鉻、鐵、錳、鎳的比例0% ~ 30%,擁有最佳機械性質與變形機制的元素組成。本研究發現改變鈷、鎳、鉻的比例,強度與楊氏係數隨著比例增加而上升,改變錳、鐵的比例,強度與楊氏係數隨著比例減少而下降。本研究分析個別元素之應力分布認為:Cantor Alloy系統之強度與楊氏係數和金屬元素本身的強度與楊氏係數之性質有關。本研究主要分析三種變形機制,包括:滑移誘導塑性變形機制(Slip-Induced Plasticity, SLIP)、孿晶誘導塑性變形機制(Twinning-Induced Plasticity, TWIP)、相變誘導塑性變形機制(Transformation-Induced Plasticity, TRIP),探討三種變形機制與高熵合金延展性之關聯。本研究模擬結果,大部分的差排、疊差(Stacking Fault, SF)、孿晶界(Twin Boundary, TB)都發生在面心立方堆積主要滑移(111)面上,且晶體結構產生越多的差排和SF,擁有越好的延展性,模擬結果符合文獻。本研究模擬結果改變錳的比例30%為TRIP變形機制,以及改變鎳的比例0% ~ 20%,隨著改變鎳的比例下降,微觀結構的六方最密堆積之穩定性增加,六方最密堆積之比例上升,模擬之趨勢皆與文獻之趨勢吻合。本研究模擬結果等莫耳CoCrFeMnNi合金並非擁有最佳強度、楊氏係數、延展性等機械性質的比例,模擬結果符合文獻。本研究發現改變錳、鐵的比例,延展性隨著比例增加而上升。延展性與變形機制有關,SLIP + TWIP + TRIP產生之延展性大於50%,為最好延展性之變形機制。本研究分析並分類三種變形機制之延展性SLIP + TWIP + TRIP、SLIP + TRIP、SLIP + TWIP,歸納出產生最好延展性之變形機制依序為SLIP + TWIP + TRIP > SLIP + TRIP > SLIP + TWIP。zh_TW
dc.description.abstractHigh-entropy alloys were defined by Yeh in 1995. Due to their excellent mechanical properties, high-entropy alloys have gained much attention from academia and industry. However, deformation mechanisms of high-entropy alloys have not been thoroughly clarified. Therefore, the objective of this thesis is to investigate the effect of individual element composition and microstructure on mechanical properties and deformation mechanisms using molecular dynamics simulation. In this study, we established atomistic models using molecular dynamics simulation. The material of high-entropy alloys, composed of cobalt, chromium, iron, manganese, and nickel, is known as Cantor Alloy. We adjusted the proportion of cobalt, chromium, iron, manganese, and nickel in the Cantor Alloy system by 0% to 30% and randomized the atoms evenly with the Monte Carlo method. We used the modified embedded atom method (MEAM) potential energy function for molecular dynamics simulation and simulated high-entropy alloys under uniaxial tensile loading. We clarified the important factors, such as individual element composition and microstructure, and analyzed how these important factors affect the mechanical properties and deformation mechanisms of the Cantor Alloy system. We also found the optimum element composition of Cantor Alloy system for mechanical properties and deformation mechanisms. In this study, we found that change of the proportion of cobalt, nickel, and chromium from 0% to 30%, the strength and Young’s Modulus increase with the proportion and change of the proportion of manganese and iron from 0% to 30%, the strength and Young’s Modulus decrease with the proportion. We analyzed the stress distribution of individual elements and we considered that strength and Young’s Modulus of the Cantor Alloy system are related to the strength and Young’s Modulus of the metal elements. In this study, we mainly analyzed three deformation mechanisms, such as slip-induced plasticity (SLIP), twinning-induced plasticity (TWIP), and transformation-induced plasticity (TRIP). We investigated the relationship between three deformation mechanisms and elongation. The simulation results show that most of dislocations, stacking faults (SF), and twin boundaries (TB) occur on the (111) surface of the face centered cubic crystal structure. Simulation results show that more dislocations and SFs enhance the ductility. In addition, we changed the proportion of manganese by 30% and the deformation mechanism is TRIP. We changed the proportion of nickel from 0% to 20%. As the proportion of nickel decreases, the stability of the hexagonal closest packing of the microstructure increases, and the hexagonal closest packing occurs more. The trend of simulations is consistent with the trend of experimental measurements. We also found that equimolar composition is not the optimum composition of Cantor Alloy system for mechanical properties and deformation mechanisms. In this study, we found that change of the proportion of manganese and iron from 0% to 30%, the ductility increases with the proportion. Ductility is related to the deformation mechanisms. Elongation produced by SLIP + TWIP + TRIP deformation mechanism is greater than 50%, which is the best elongation. We analyzed and classified the elongations of SLIP + TWIP + TRIP, SLIP + TRIP, and SLIP + TWIP deformation mechanisms. We found that elongations produced by SLIP + TWIP + TRIP deformation mechanism are greater than those produced by SLIP + TRIP deformation mechanism. Elongations produced by SLIP + TRIP deformation mechanism are greater than those produced by SLIP + TWIP deformation mechanism.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:45:49Z (GMT). No. of bitstreams: 1
ntu-107-R05521603-1.pdf: 10901418 bytes, checksum: 0c9d6db0f0af6902a3862064da4b73ae (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xv
第1章、 緒論 1
1.1 高熵合金 1
1.2 研究動機 8
1.3 研究目的 14
1.4 論文章節架構 15
第2章、 理論與方法 17
2.1 分子動力模擬 17
2.2 勢能函數 18
2.3 蒙地卡羅方法 21
2.4 變形機制 22
2.5 小結 32
第3章、 模擬與分析 33
3.1 模擬軟體 33
3.2 原子模型 33
3.3 模擬流程 34
3.3.1 溫度平衡模擬 35
3.3.2 蒙地卡羅模擬 38
3.3.3 拉伸試驗模擬 38
3.3.4 模擬結果分析 42
3.4 小結 46
第4章、 結果與討論 47
4.1 改變Cantor Alloy系統中錳的比例 47
4.2 改變Cantor Alloy系統中鈷的比例 60
4.3 改變Cantor Alloy系統中鎳的比例 71
4.4 改變Cantor Alloy系統中鉻的比例 80
4.5 改變Cantor Alloy系統中鐵的比例 89
4.6 討論 97
第5章、 結論與展望 104
5.1 總結 104
5.2 未來展望 105
REFERENCE 106
dc.language.isozh-TW
dc.title以分子動力模擬探討高熵合金的機械性質與變形機制zh_TW
dc.titleMechanical Properties and Deformation Mechanisms of High-Entropy Alloys by Molecular Dynamic Simulationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張書瑋,顏鴻威,陳健群
dc.subject.keyword高熵合金,分子動力模擬,變形機制,微觀結構,元素組成,zh_TW
dc.subject.keywordhigh-entropy alloys,molecular dynamic simulation,deformation mechanisms,microstructure,elemental composition,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201802230
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf10.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved