請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Fan Jun 一 Huei | en |
| dc.contributor.author | 範潤薈 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:47Z | - |
| dc.date.available | 2021-07-01T08:12:47Z | - |
| dc.date.issued | 2002 | |
| dc.identifier.citation | Akiyama S.K. 1996. Integrins in cell adhesion and signaling. Hum Cell. 3: 181-186.
Albelda, S. M., and Buck, C. A. 1990.Integrins and other cell adhesion molecules. FASEB J. 4: 2868-2880. Alexey M. B., and S. Francesco Retta. 1998. β1D integrin inhibits cell cycle progression in normal myoblasts and fibroblasts. J Biol. Chem. 273 (24): 15234-15240. Anderson, R.G. W. 1998. The caveolae membrane system. Annu. Biochem. 67: 199-225. Bagowski C. P., Matthias S-G, Choidas A., and Ullrich. A. 1999. Cell-type specific phosphorylation of threonines T654 and T669 by PKD defines the signal capacity of the EGF receptor. EMBO J. 18: 5567-5576. Barbacid M, 1987. ras genes. Annu. Rev. Biochem. 56: 779-827. Beol R. S., Jamieson J. C., and Wright J. A. 1993. Studies on the effect of mevinolin (lovastatin) and mevastatin (compactin) on the fusion of L6 myoblasts. Mol. Cell. Biochem. 126: 159-167. Bouillot C., Prochiantz A., Rougon G, and Allinquant B. 1996. J. Biol. Chem. 271: 7640-7644. Boyer, B., Roche, S., Denoyelle, M., and Thiery, J. P. 1997. Src and Ras are involved In separate pathways in epithelial cell scattering. EMBO J. 16: 5904-5913. Brown, M. S., Goldstein, J. L., Paris, K. J., Burnier, J. P. and Marsters, J. C., Jr. 1992. Tetrapeptide inhibitors of protein farnesyltrnasferase: amino terminal substitution in phenylalanine containing tetrapeptides restores farnesylation. Proc. Natl. Acad. Sci. USA 89: 8313-8316. Cai T., Lei Q. Y., Wang L.Y.,Zha X. L. , 2000. TGF-β1 Modulated the Expression ofη5β1 Integrin and lntegrin-Mediated Signaling in Human Hepatocarcinoma Cells. Bioche. Biophys. Res. Com. 274: 519-525. Casey, P. J., and Seabra, M. C. 1996. Protein prenyltransferase. J. Boil. Chem. 271: 5289-5292. Chapman H. A., Ying W., Daniel I. S., and David A. W.. 1999. Role of urokinase receptor and caveolin in regulation of integrin signaling. Thrembosis and Haemostasis. 82 (2): 291-297. Chen C. H., Wang H. C. and Chuang N. N., 2000. Interaction of shrimp Ras protein with mammalian caveolin-1. J. Experi. Zoo. 287: 432-439. Chen, P., Gupta, K., and Wells, A. 1994. Cell movement elicited by epidermal growth factor receptor requires kinase and autophosphorylation but is separable from mitogenesis. J. Cell Biol. 124: 547-555. Christopher J. F., Anita B., and Phoebe E. F. 1999. Intracellular cholesterol transport in synchroniced human skin fibroblast. Biochemistry. 38: 2506-2513. Clancy M. R., Rediske J., Tang X., Nijher N., Frenkel S., Philips M., and Abramson S. B. 1997. Outside-in signaling in the chondrocyte. J. Clin. Invest. 100 (7): 1789-1796. Conrad, P. A., Smart E. J., . Ying Y.S, Anderson R. G., and Bloom G. S. 1995. Caveolin cycles between plasma membrane caveolae and the golgi complex by microtubule dependent and miceotubuleoindependent steps. J. Cell. Biol. 131: 1421-1433. Couet. J., Li S., Okamoto, T., Ikezu, T., and Lisanti, M. P. 1997. Identification of prptide and protein ligands for the caveolin scaffolding domain. Implications for the interaction of caveolin with caveolae associated proteins. J. Biol. Chem, 272: 6525-6533. Colette Bouillot, Alain Prochiantz, Genevi?ve Rougon, and Bernadette Allinquant 1996. Axonal Amyloid Precursor Protein Expressed by Neurons in Vitro Is Present in a Membrane Fraction with Caveolae-like Properties J. Biol. Chem. 271: 7640-7644. Colin J., Norma Y., Johan von Lint, John L., Jackie R. V., D. John F., and Vivek M. 1999. Gβγ-mediated regulation of golgi organization is through the direct activation of protein kinase D. Cell. 98: 59-68. Dietzen, D. J., Hastings, W. R., and Lublin, D. M. 1995. Caveolin is palmitoylated on multiple cysteube residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270: 6838-6842. Dieterich S., Herget T., Link G., Bottinger H., Pfiwenmaier K. , and Johannes F. J. 1996. In vitro activation and substrates of recombinant, baculovirus exprressed human protein kinase C ?. FEBS Lett. 381: 183-187. Duband, J. L., Rocher, S., Chen, W. T., Yamada, K. M. and Thiery, J. P. 1986. Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J Cell Biol. 102: 160-178. Dupree, P., Parton, R, G., Raposo G., Kurcshalia, T. V., and Simons, K. 1993. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J. 12: 1597-1605. Eberlein M., Heusinger-Ribero J. and Goppelt-Struebe. M. 2001.Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins) . British Journal of Pharmacology. 133: 1172-1180. Edwards P. A, Ericsson J. 1999. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Anny Rev Biochem. 68: 157-185. Endo A., Kuroda M., Tsujita Y. 1976. ML-236A, ML-236B and ML-236C, new inhibitors of cholesterogenesis produced by penicillium citrinum. J Antibiot (Japan). 29: 1346-1348. Endo K., Oki E., Biedermann V., Kojima H., KiyotsuguY., Johannes F-J, Kufe D., and Datta R., 2000. Proteolytic cleavage and activation of protein kinase C? by caspase-3 in the apoptotic response of cells to l-β-D-arabinofuranosylcytosine and other genotoxic agents. J. Biol. Chem. 275: 18476-18481 Erkki R. and John C. R. 1994. Anchorage dependence, integrins , and apoptosis. Cell. 77: 477-478. Essig, M., Vrtovsnik, F., Nguyen, G., Sraer, J. D. and Friedlander, G. 1998. Lovastatin modulates in vivo and in vitro the plasminogen activator/plasmin system of rat proximal tubular cells: role of geranylgeranylation and Rho proteins. J. Am. Soc. Nephrol., 9: 1377-1388. Folkman, K., and Moscona, A. 1978. The role of cell shape in growth control. Nature273: 345-349. Formaro M., Steger C. A., Bennett A. M., Wu J.J. and Languino L. R. 2000. Differential role of beta (1C) and beta (1A) integrin cytoplasmic variants in modulating focal adhesion kinase, protein kinase B/AKT, and Ras/Mitogen-activated protein kinase pathways. Mol. Biol. Cell. Jul, 11(7): 11 (7): 2235-2249. Fomaro M, Manzotti M, Tallini G, Slear A. E., Bosari S., Ruoslahti E., Languino L.R. 1998. Beta lC integrin in epithelial cells correlates with a nonproliferative phenotype: forced expression of beta 1C inhibits prostate epithelial cell proliferation. Am J Pathol. 153(4): 1079-87. Fujimoto,T., Hagiwara. H., Aoki, T., Kogo, H. and Nomura, R. 1998. Caveolae: a morphological point of view. J Electron Microsc. 47: 451-460. Goldstein J. L., Brown M. S., 1990. Regulation of the mevalonate pathway. Nature. 343: 425-430. Goldstein, J. L., Brown, M. S., Stradley, S. J., Reiss, Y. and Gierasch, L. M. 1991. Nonfarnsylated tetrapeptide inhibitors of protein farnesyltrasferase. J. Biol. Chem. 266: 15575-15578. Grunler J, Ericsson J, Dallner G. 1994. Branch-point reactines in the biosynthesis of cholesterolm dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta. 1212: 259-277. Gu J., Tamura M., Pankov R., Danen E. H., Takino T., Matsumoto K., Yamada K. M. 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol. 146 (2): 389-403. Hancock J. F., Magee A. I. Childs J. E., Marchall C. J. 1989. All ras proteins are polysoprenylated but only some are palmitoylated. Cell. 57: 1167-1177. Harder, T., and Simons, K., 1997. Caveolae, DIGs, and the dynamics of sphingolipid cholesterol microdomains. Curr. Opin. Cell Biol. 9: 534-542. Hanck C. R., Hsia, D. A., and Schlaepfer D.D. 2000. FAK facilitates PDGF-BB stimulated ERK2 activation required for chemotaxis migration of vascular smooth muscle cells. J. Biol. Chem., 275: 41092-41099. Hoffman E.P. and. Kunkel L. M. 1989 Dystrophin Abnormalities In Duchenne/Becker Muscular Dystrophy Neuron 2: 1019 Huang C. F., and Chuang N.N., 1999. Facilitated geranylgeranylation of shrimp ras-encoded p25 fusion protein by the binding with guanosine diphosphate. J. Experi. Zool. 283: 1381-1385. Hurd C., and Rozengurt. E.,.2001. Protein Kinase D Is Sufficient to Suppress EGF-Induced c-Jun Ser 63 Phosphorylation. Biochem. Biophs. Res. Commun. 282: 404-408 Hynes R. O., and Lander, A. D. 1992. Contact and adhesive specificitied in the associations, migrations, and targeting of cells and axons. Cell. 68: 303-322. Hynes R. O. 1992. Integrins: versatility, modulation, and signaling in adhesion. Cell. 69: 11-25. Ivessa N.E.,Gravotta D., Chiarandini-L. C. D., and Kreibich G. 1997. Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the golgi apparatus to the endoplasmic reticulum. J. Btol. Chem. 272 (33): 20828-20834. Iglesias T., Mattew S., and Rozengurt E. 1998. Dissimilar phorbol ester binding properties of the individual cystein-rich motifs of protein kinase D. FEBS Lett., 437, 19-23. Jackson S. M., Ericsson J., Edwards P. A., 1997. Signaling molecules dericed from the cholesterol biosynthetis pathway. Scucell Biochem. 28: 1-21. Jackson J. H., Cochrane C. G., Bourne J. R., Solski P. A., Buss J. E., and Der C. J. 1990. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. Proc. Natl. Acad. Sci. 87: 3042-3046. James G. L., Goldstein J. L., and Brown M. S.,. 1995. Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in Vitro. J. Biol. Chem. 270: 6221-6226. Jamora C., Yamanouye N., Van Lint J., Laudenslager J., Vandenheede J. R., Faulkner D. J., and Malhotra V. 1999. G betagamma mediated regulation of golgi organication is through the direct activation of protein kinase D. Cell. 98: 59-68. Johannes F. J., Prestle J., Eis S., Oberhagemann P., and Pfizenmaier K. 1994. PKC? is a novel, a atypical member of the protein kinase C family. J. Biol. Chem. 269: 6140-6148. Kato K., Cox A. D., Hisaka M. M., Graham S. M., Buss J. E., and Der C. J., 1992. Isoprenoid Addition to Ras Protein is the Critical Modification for its Membrane Association and Transforming Activity. Proc. Natl. Acad. Sci. U. S. A. 89: 6403-6407 Khosravi-Far R, Solski P. A., Clark G. J., Kinch M. S., and Der C. J., 1995. Activation of Rac 1,RhoA, and mitogen-activated protein kinases is required for Ras transformation Mol. Cell. Biol. 15: 6443-6453. Kiss A. L., Turi A., Muller N., Kantor O., Botos E. 2002. Caveolae and caveolin isoforms in rat peritoneal macrophages. Micron. 33 (1): 75-93. Koleske A., Baltimore J. D., and Lisanti M. P.,1995. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. 92: 1381-1385. Klingbeil, C. K., Hauck, C. R., Hsia, D. A., Jones, K. C., Reider, S. R., and schlaepfer, D. D. 2001. Targeting Pyk2 to βl intergrin containing focal contacts rescues frbtonectin stimulated signaling and haptotactic motility defects of focal adhesion kinase null cells. J. Cell Biol. 152: 97-110. Lane L. C., 1978. A simple method for stabilising protein sulfhydry1 group during SDS-gel electrophoresis. Anal. Biochem. 86: 655-664. Lerner E. C., Qian Y., Michelle A. B., Renae D. F. , Andreas V. 1995. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexs. J. Biol. Chem. 270 (45): 26802-26806. Lerner E.C., Zhang T., Knowles. D. B., Qian Y, Hamilton A. D., and Sebti S. M. 1997. Inhibition of the prenylation of K-ras, but not H-or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransgerase I inhibitor in human tumor cell lines. Oncogene. 15: 1283-1288. Li S., Couet J., and Lisanti M. P.,. 1996. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane anchored scaffolding protein, caveolin. Caveolin binding negatively regulated the auto-activation of Src tyrocine kinases. J. Biol. Chem. 271: 29182-29190. Lin R.S., and Chuang N. N.,1998. Carboxyl-terminal CFFL-sequence-specific monomeric protein geranylgeranyltransferase I from the eyes of the shrimp Penaeus japonicus. J. Experi. 2001. 281: 565-573. Lin T. H., Aplin A. E., Shen Y, Chen Q., Schaller M., Romer L., Aukhil U., and. Juliano R. L. 1997. Integrin-mediated ativation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblast. J. Cell Biol. 136(6): 1385-1395. Liljedahl M., Maeda Y., Colanzi A.,Ayala I., Johan van Lint, and Malhotra V. 2001. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans golgi network. Cell. 104: 409-420. Loftus J. C., Liddington R. C., 1997. New insights into integtin ligand interaction. J. Clin. Invest. 99: 2302-2306. Mainiero, F., Pepe A., Wary, K. K. Spinardi L., Mohammadi, M., Schlessinger, J, M and Giancotti, F.G. 1995. Signal transduction by the α6 β4 integrin: distinct β4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMOB J. 14 4470-4481. Martin V., Pilkuhn S., Wille H., Nixon R, DeArmond S. J., Smart E. J., Anderson Richard G. W., Richraboulos A., and Prusiner S. B.,. 1996. Subcellular colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. 93: 14945-14949 Matthews S. A., Iglesias T., Rozengurt E., and Cantrell D.2000. Spatial and temporal regulation of protein kinase D (PKD). EMOB J. 19: 2935-2945. Meredith J. E., Fazeli. B., and Schwartz, M. A.1993. The extracellular matrix as a cell survival factor. Mol. Biol. Cell. 4: 953-961. Mehdi S., Thilo J., Philippe de S., Rahim R. and Hans-Joachim M.. 1999. Signal transduction by βl integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem. J. 342: 615-623. Michael J. Taggart, Paul Leavis, Olivier Feron, and Kathleen G, Morgan. 2000. Inhibition of PKC αand rhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Cell Research. 258: 72-81. Murata,M., Peranen J., Schreiner R., Wieland F., Kurzchalia T. V., and Simons. K. 1995. VIP21/ caveolinis a cholesterol-binding protein. Proc. Natl. Acad. Sci. 92: 10339-10343. Nishikawa, K., Toker A., Wong K., Marignani P. A., Johannes F. J., and Cantley L.C.1998. Association of protein kinase C mu with type Ⅱ phosphatidylinosito1 4-kinase and type Ⅰphosphatidylinosito1 4-phosphates-kinase. J. Biol. Chem. 272: 23126-23133 . Okamoto. T., Schlegel, A., Schlegel , P. E., and Lisanti, M. P. 1998. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273: 5419-5422. Oktay, M.,Wary K. K., Dans, M., Birge, R. B., and Giancotti, F.G. 1999. Integrin mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J. Cell. Biol. 145: 1461-469. Omer, C.A. and Gibbs, J. B. 1994. Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol. Microbiol. 11: 219-225. Overmeyer J. H., and Maltese W. A., 1992. Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein. J. Biol. Chem. 267: 22686-22692. Parton, R. G. 1996. Caveolae and caveolins. Curr. Opin. Cell. Biol 8: 542-548. Parton, R. G. 1994. Ultranstructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42: 155-166. Phillips S. E., Bingdong Sha,Topalof L., Xie Z. G., James G. Alb, Klenchin V. A., Swigart P., Cockcroft S. S., Martin Thomas F. J., Luo M., and. Bankaitis V. A., 1999. Yeast Sec l4p Deficient in Phosphatidylinositol Transfer Activity is Functional In Vivo Mol Cell. 4(2): 187-197 Prestle J., Pfizenmaier K., Brenner J., and Johannes F. J.1996. Protein kinase mu islocated at the golgi compariment. J. Cell. Biol. 134: 1401-1410. Ramirez M. I., Lee. P., Millien G.,. Cao Y. X, Hinds A.and Williams. M. C. 2002. The α-sioform of caveolin-1 is a marker of vasculogenesis in early lung development. J. Histochem. Cytochem. 50 (1): 33-42. Reissm Y, Goldwrein, J. L., Seabra, M.C., Casey, P. J., and Brown, M. S. 1990. Inhibition of purified p21 ras famesy1 : protein transferase by Cys-AAX tetrapeptides. Cell 62: 81-88. Ridyard M. S. and Sanders. E. J. 1998. Cellular phenotypic transformation during early embrogenesis: a role for focal adhesion kinase Biochem. Cell. Biol. 76: 45-58 Rfeffer S. R. 1994. Rab GTPase: master regulators of membrane traffickiiing. Curr. Opin. Cell. Biol. 6: 522-526. Rothberg, K. G., Heuser J. E., Donzell W. C., Ying Y. S., Genney J. R., and Anderson R. 1992. Caveolin, a protein component of caveolae membrane coats. Cell. 68: 673-682. Ruoslahti E., Reed J. C., 1994. Anchorage dependence, integrins, and apoptosis. Cell. 77: 477- 478. Russell D. W., Setchell K. D., 1992. Bile acid biosynthesis. Biochemistly. 31: 4737-4749. Schaller M. D., Otey C. A,, Hildebrand. J. D., and Parsons, J. T. 1995. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell. Biol. 130, 1181-1187. Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., Lodish, H. F. and Lisanti, M.P. 1995. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform specific monoclonal antibody probe. J. Btol. Chem. 270. 16395-16401. Schere, P.E.,Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F. and Lisanti, M.P. 1996. Identification, sequence and experssion of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA. 93: 131-135. Scheiffele, P.,Verkade P., Fra A. M., Virta H., Simons K., and Ikonen. E., 1998. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell. Biol. 140: 795-806. Schlaepfer D. D., Hanks S.K., Hunter T., and Peter van der Geer. 1994. Integrin-mediated signal tranduction linked to ras pathway by GRB2 binding to focal adhesion kinase. Nature. 3720: 786-791 Schlaepfer, D.D., and Hunter, T. 1997. FAK overexpression enhances Ras dependent integrin signaling to ERK2/mitogen activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272: 13189-13195. Schlaepfer D. D., Hauck C. R., Sieg D. J., 1999. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 71 (3-4): 435-478. Schnitzer, J. E., McIntosh D. P., Dvorak A. M., Liu J., and Oh. P. 1995 . Spearation of caveolae from associated microdomains of GPI-anchored proteins. Science. 269: 1435-1439. Sebti S. M., and Hamliton A. D. 1997. Inhibition of ras prenylation: a novel approach to cancer chemotherapy. Pharmacol. Ther. 74: 103-114. Seig D. J., Huank C. R., Ilic D., Klingbeil C. K., Schaefer E., Damsky C. H. and Schlaepfer D.D. 2000. FAK integrates growth factor and integrin signals to promote cell migration. Nat. Cell Biol., 2: 249-256. Sethi T.,Ginsberg M. H., Downward J., Hughes P. E. 1999. The small GTP-binding protein r-ras can influence integrin activation by antagonizing a ras/raf-initiated integrin suppression pathway. Mol. Biol. Cell. 10: 1799-1809. Smart, E. J., Ying Y. S., Conrad P. A., and Anderson R. G. 1994. Caveolin moves from caveolae to the golgi apparatus in response to cholesterol oxidation. J. Cell. Biol. 127: 1185-1197. Smart,E. J., Ying Y., Donzell W. C., and Anderson R. G.. 1996. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271: 29427-29435. Song K. S., Li S., Okamoto T., Quillian L. A., Sargiacomo M. Lisanti M. P. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271(16): 9690-9697. Springer T. A.,.1990. Adhesion receprots of the immune system, Nature 346: 425-434. Springer, T.A. 1990. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adheion receptors. Annu. Rev. Cell. Biol. 6: 359- 402. Springer T.A. 1997. Folding of the N-terminal, ligand binding region integrin a subunits into a b-propeller domain. Pro. Natl. Acad. 94: 65-72. Stroz P., Hausser A., Link G., Dedio J., Ghebrehiwet B., Pfizenmaier K., and Johannes F. J. 2000. Protein kinase C? is regulated by the multifunctional chaperon protein p32. J. Biol. Chem. 275. 24601-24607. Tamrhashi Y., Yamaka N., Marsumoto K., Toyoda Y., Furukawa K., and Sato Eimei. 2000. Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol. Reproduct. 56: 412-433. Taggart M.J., Leavis P., Feron O.,and Morgan K.G. 2000. Inhibition of PKCαand thoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide.Exp. Cell Research. 258: 72-81. Tamura Gu, J., Pankov M., Danen R., Taikno E. H., Matsumoto T. K., and Yamada , K. M. 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J.Cell Biol., 146: 389-404. Tang, Z. L., Scherer, P. E,, Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. F. and Lisanti, M. P. 1996, Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscule. J. Biol. Chem. 271: 2255-2261. Tsung H, Lin, Andrew E. APlin, Yu Shen, Qiming Chen, Michael Schaller, Lewis Romer, Ukramuddin Aukhil, and Juliano R. L.,. 1997. Integrin-mediated ativation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblast. J. Cell Biol. 136(6): 1385-1395. Valveule A. M., Sinnet-Smith J., VanLint J., and Rozengurt E. 1994. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc. Natl. Acad Sci. 91: 7572-7576. Wary K. K., Mainiero F., Isakoff S. J., Marcantonio E. E., Giancotti F. G., 1996. The adaptor protein Shc couples a class of integins to the control of cell cycle progression Cell. 87: 733-743. Whry K. K., Agnese M., Chiara Z., and Filippo G. G., 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage dependent cell growth. Cell. 94: 625-634. Xia Z,Tan M. M., Wong W. L., Dimitroulakos J., Minden M. D.,and Penn L. Z., 2001. Blocking protein geranylgeranulation essential for lovastatin induced apoptosis of human acute myeloid leukemia cells. Leukemia. 15: 1398-1407. Zhang, F.L., and Casey, P. J., 1996. Protein preylation: molecular mechanisms and functional consequences . Annu. Rev. Biochem. 65: 241-269. Okamoto. T., Schlegel, A., Schlegel , P. E., and Lisanti, M. P. 1998. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273: 5419-5422. Oktay, M.,Wary K. K., Dans, M., Birge, R. B., and Giancotti, F.G. 1999. Integrin mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J. Cell. Biol. 145: 1461-469. Omer, C.A. and Gibbs, J. B. 1994. Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol. Microbiol. 11: 219-225. Overmeyer J. H., and Maltese W. A., 1992. Isoprenoid requirement for intracellular transport and processing of murine leukemia virus envelope protein. J. Biol. Chem. 267: 22686-22692. Parton, R. G. 1996. Caveolae and caveolins. Curr. Opin. Cell. Biol 8: 542-548. Parton, R. G. 1994. Ultranstructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42: 155-166. Phillips S. E., Bingdong Sha,Topalof L., Xie Z. G., James G. Alb, Klenchin V. A., Swigart P., Cockcroft S. S., Martin Thomas F. J., Luo M., and. Bankaitis V. A., 1999. Yeast Sec l4p Deficient in Phosphatidylinositol Transfer Activity is Functional In Vivo Mol Cell. 4(2): 187-197 Prestle J., Pfizenmaier K., Brenner J., and Johannes F. J.1996. Protein kinase mu islocated at the golgi compariment. J. Cell. Biol. 134: 1401-1410. Ramirez M. I., Lee. P., Millien G.,. Cao Y. X, Hinds A.and Williams. M. C. 2002. The α-sioform of caveolin-1 is a marker of vasculogenesis in early lung development. J. Histochem. Cytochem. 50 (1): 33-42. Reissm Y, Goldwrein, J. L., Seabra, M.C., Casey, P. J., and Brown, M. S. 1990. Inhibition of purified p21 ras famesy1 : protein transferase by Cys-AAX tetrapeptides. Cell 62: 81-88. Ridyard M. S. and Sanders. E. J. 1998. Cellular phenotypic transformation during early embrogenesis: a role for focal adhesion kinase Biochem. Cell. Biol. 76: 45-58 Rfeffer S. R. 1994. Rab GTPase: master regulators of membrane traffickiiing. Curr. Opin. Cell. Biol. 6: 522-526. Rothberg, K. G., Heuser J. E., Donzell W. C., Ying Y. S., Genney J. R., and Anderson R. 1992. Caveolin, a protein component of caveolae membrane coats. Cell. 68: 673-682. Ruoslahti E., Reed J. C., 1994. Anchorage dependence, integrins, and apoptosis. Cell. 77: 477- 478. Russell D. W., Setchell K. D., 1992. Bile acid biosynthesis. Biochemistly. 31: 4737-4749. Schaller M. D., Otey C. A,, Hildebrand. J. D., and Parsons, J. T. 1995. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J. Cell. Biol. 130, 1181-1187. Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., Lodish, H. F. and Lisanti, M.P. 1995. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform specific monoclonal antibody probe. J. Btol. Chem. 270. 16395-16401. Schere, P.E.,Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F. and Lisanti, M.P. 1996. Identification, sequence and experssion of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA. 93: 131-135. Scheiffele, P.,Verkade P., Fra A. M., Virta H., Simons K., and Ikonen. E., 1998. Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J Cell. Biol. 140: 795-806. Schlaepfer D. D., Hanks S.K., Hunter T., and Peter van der Geer. 1994. Integrin-mediated signal tranduction linked to ras pathway by GRB2 binding to focal adhesion kinase. Nature. 3720: 786-791 Schlaepfer, D.D., and Hunter, T. 1997. FAK overexpression enhances Ras dependent integrin signaling to ERK2/mitogen activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272: 13189-13195. Schlaepfer D. D., Hauck C. R., Sieg D. J., 1999. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 71 (3-4): 435-478. Schnitzer, J. E., McIntosh D. P., Dvorak A. M., Liu J., and Oh. P. 1995 . Spearation of caveolae from associated microdomains of GPI-anchored proteins. Science. 269: 1435-1439. Sebti S. M., and Hamliton A. D. 1997. Inhibition of ras prenylation: a novel approach to cancer chemotherapy. Pharmacol. Ther. 74: 103-114. Seig D. J., Huank C. R., Ilic D., Klingbeil C. K., Schaefer E., Damsky C. H. and Schlaepfer D.D. 2000. FAK integrates growth factor and integrin signals to promote cell migration. Nat. Cell Biol., 2: 249-256. Sethi T.,Ginsberg M. H., Downward J., Hughes P. E. 1999. The small GTP-binding protein r-ras can influence integrin activation by antagonizing a ras/raf-initiated integrin suppression pathway. Mol. Biol. Cell. 10: 1799-1809. Smart, E. J., Ying Y. S., Conrad P. A., and Anderson R. G. 1994. Caveolin moves from caveolae to the golgi apparatus in response to cholesterol oxidation. J. Cell. Biol. 127: 1185-1197. Smart,E. J., Ying Y., Donzell W. C., and Anderson R. G.. 1996. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271: 29427-29435. Song K. S., Li S., Okamoto T., Quillian L. A., Sargiacomo M. Lisanti M. P. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. J. Biol. Chem. 271(16): 9690-9697. Springer T. A.,.1990. Adhesion receprots of the immune system, Nature 346: 425-434. Springer, T.A. 1990. The sensation and regulation of interactions with the extracellular environment: the cell biology of lymphocyte adheion receptors. Annu. Rev. Cell. Biol. 6: 359- 402. Springer T.A. 1997. Folding of the N-terminal, ligand binding region integrin a subunits into a b-propeller domain. Pro. Natl. Acad. 94: 65-72. Stroz P., Hausser A., Link G., Dedio J., Ghebrehiwet B., Pfizenmaier K., and Johannes F. J. 2000. Protein kinase C? is regulated by the multifunctional chaperon protein p32. J. Biol. Chem. 275. 24601-24607. Tamrhashi Y., Yamaka N., Marsumoto K., Toyoda Y., Furukawa K., and Sato Eimei. 2000. Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol. Reproduct. 56: 412-433. Taggart M.J., Leavis P., Feron O.,and Morgan K.G. 2000. Inhibition of PKCαand thoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide.Exp. Cell Research. 258: 72-81. Tamura Gu, J., Pankov M., Danen R., Taikno E. H., Matsumoto T. K., and Yamada , K. M. 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J.Cell Biol., 146: 389-404. Tang, Z. L., Scherer, P. E,, Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. F. and Lisanti, M. P. 1996, Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscule. J. Biol. Chem. 271: 2255-2261. Tsung H, Lin, Andrew E. APlin, Yu Shen, Qiming Chen, Michael Schaller, Lewis Romer, Ukramuddin Aukhil, and Juliano R. L.,. 1997. Integrin-mediated ativation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblast. J. Cell Biol. 136(6): 1385-1395. Valveule A. M., Sinnet-Smith J., VanLint J., and Rozengurt E. 1994. Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc. Natl. Acad Sci. 91: 7572-7576. Wary K. K., Mainiero F., Isakoff S. J., Marcantonio E. E., Giancotti F. G., 1996. The adaptor protein Shc couples a class of integins to the control of cell cycle progression Cell. 87: 733-743. Whry K. K., Agnese M., Chiara Z., and Filippo G. G., 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage dependent cell growth. Cell. 94: 625-634. Xia Z,Tan M. M., Wong W. L., Dimitroulakos J., Minden M. D.,and Penn L. Z., 2001. Blocking protein geranylgeranulation essential for lovastatin induced apoptosis of human acute myeloid leukemia cells. Leukemia. 15: 1398-1407. Zhang, F.L., and Casey, P. J., 1996. Protein preylation: molecular mechanisms and functional consequences . Annu. Rev. Biochem. 65: 241-269. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75348 | - |
| dc.description.abstract | 本論文藉由S-ras (Q61K) Balb / 3T3細胞,去探討當細胞內膽固醇的生合成路徑遭到阻礙時,細胞內與訊息傳導相關的蛋白integrin βl , caveolin-l (Cav-l)以及FAK之間的交互作用。 本論文首先利用不同濃度的SB-14分次萃取pcDNA 3.1 Balb/3T3細胞以及shrimp-ras (Q61K) pcDNA3.1 Balb/3T3轉型細胞之膜蛋白,發現無論在pcDNA 3.1Balb/3T3細胞中或者 shrimp-ras (Q61K) pcDNA3.1 Balb/3T3轉型細胞中,絕大多數(~99%)的integrinβ1都出現在以0.1% SB-14處理後的細胞膜之蛋白液中。當細胞分別處理10μM mevastatin以阻斷 mevalonate pathway,在0.1% SB-14所抽取的pcDNA 3.1 Balb/3T3細胞之細胞膜蛋白萃取液中,Cav-l的量上升。在免疫沈澱法實驗中,未處理過mevastatin的shrimp-ras(Q61K) pcDNA 3.1 Balb/3T3轉型細胞,其在integrin βl上有Cav-l量的增加而形成 integrin βl-Cav-l complex,以及integrin βl上降解的FAK;經由mevastatin的處理後,在轉殖pcDNA 3.1質體的Balb/3T3細胞中的integrin β1上也有Cav-1量的增加,形成integin βl-Cav-1 complex,同樣integrin βl上也出現降解的FAK。推論經過mevastatin處理的pcDNA 3.1 Balb/3T3細胞,在0.1% SB-14所抽取的細胞膜之蛋白液中增加的Cav-l,可能用以協助細胞形成integrin βl-Cav-1 complex。 PKD為golgi 中參與蛋白質傳遞的分子,而細胞中的Cav-l必須經由golgi傳送。為了推測integrin complex上增量的Cav-1來自於何處,所以分別將經過或未經過mevastatin處理的細胞染測PKD以及phospho-PKD。結果顯示pc DNA 3.1 Balb/3T3細胞和S-ras (Q61K) Balb/3T3轉型細胞中,存在未磷酸化的PKD,此種PKD不具有運輸蛋白質的能力以推論integrin complex上增量的Cav-l是由Caveolae而來。再進一步以GGTI-286以及FTI-277處理細胞。實驗結果顯示,經過GGTI-286或FTI-277抑制prenylation作用後的轉殖或未轉殖S-ras (Q61K)的細胞中,染測不到活化的integrin complex。所以推論當細胞中prenylation 作用被抑制後,Cav-1無法在膜上被傳送。 | zh_TW |
| dc.description.abstract | BALB/3T3 cells transfected with DNA encoding shrimp Penaeus japonicus S-ras (Q61K) were transformed successfully. The interaction among integrin βl, caveolin-1 (Cav-1), and focal adhesion kinase (FAK) was studied while the biosynthesis of cholesterol was blocked. The amount of caveolin-1 in the membrane fraction of the transformed BALB/3T3 cells that was extractable with 0.1% Sulfobetaine-14 was significant larger than in pcDNA 3.l-transfected BALA/3T3 cells. The possible interaction of caveolin-1 with β1 integrin was investigated. Most of the caveolin-1 in the 0.1% Sulfobetaine-14 lysates of S-ras(Q61)-transformed BALB/3T3 cells was associated with β1 integrin, but the signal transmission of βl integrin-FAK was inhibited by the proteolysis of FAK. On the other hand, caveolin-1 in the 0.1% Sulfobetaine-14 lysates of mock-transfected BALB/3T3 cells was found to be free from binding with β1 integrin and the β1 integrin-FAK was intact for signal transmission. Following treatment by mevastatin ( a HMG -CoA reductase inhibitor) to prevent the mevalonate pathwav, mock-transfected BALB/3T3 cells exhibited additional amounts of caveolin-1 in the 0.1% Sulfobetaine-14 extractable membrane lysates, but transformed BALB/3T3 cells did not. Most of the 0.1% Sulfobetaine-1-extractable caveolin-1 in the mock-transfected and mevastatin treated BALB/3T3 was bound with β1 integrin, but the signal transmission of β1 integrin-FAK was inhibited by the proteolysis of FAK, mimicking the results in cells transformed with S-ras (Q61K). However, electron microscopy revealed no morphological identity between mevastatin-treated and S-ras (Q61K)-transformed BALB/3T3 cells. In addition, the recruitment of caveoli-1 with β1 integrin was not detectable after further incubation of S-ras (Q61K)-transformed BALB/3T3 cells with 10μM mevastatin for 3.5 hrs. However, the signal transmission of βl integrin-FAK was sustained, as arrested by the proteolysis of FAK. In other words, the recruitment of caveolin-1 with β1 integrin functions as a molecular switch that responds to cholesterol deprivation, but the proteolytic degradation of FAK does not. Furthermore, pcDNA3.l-transfected BALA/3T3 cells and S-ras(Q61K)- transformed Balb/3T3 cells were treated with 10μM GGTI-286 or 10μM GGTI-277 for 1 hr. The results show that there is no active integrin complex in pcDNA3.l-transfected BALB/3T3 cells and S-ras (Q6lK)-transformed BALB/3T3 cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2002 | en |
| dc.description.tableofcontents | 致謝………………………………………………………………………………………………………………1 目錄………………………………………………………………………………………………………………3 中文摘要…………………………………………………………………………………………………………5 英文摘要…………………………………………………………………………………………………………7 引言………………………………………………………………………………………………………………9 Caveolin的作用……………………………………………………………………………………………9 Integrin complex…………………………………………………………………………………………10 PDK 的生理活性……………………………………………………………………………………………12 膽固醇的生合成路徑之簡介………………………………………………………………………………13 Mevastatin、GGTI-286以及 FTI-277的簡介……………………………………………………………14 S-ras(Q61K)的細胞特性…………………………………………………………………………………15 實驗方法…………………………………………………………………………………………………………17 細胞培養……………………………………………………………………………………………………17 蛋白質膠體電泳及染色……………………………………………………………………………………18 西方墨點法…………………………………………………………………………………………………19 免疫沉澱法…………………………………………………………………………………………………20 西方墨點法與免疫沉澱法的比較…………………………………………………………………………21 分次萃取細胞膜蛋白的方法………………………………………………………………………………22 蛋白質定量…………………………………………………………………………………………………23 結果………………………………………………………………………………………………………………24 細胞外形……………………………………………………………………………………………………24 用不同濃度的 SB-14分次萃取細胞膜蛋白………………………………………………………………24 抑制mevalonate pathway時,pcDNA 3.1Balb/3T3細胞內之Cav-1量增加……………………………25 Shrimp-ras(Q16K)pcDNA3.1Balb/3T3轉型細胞內,其integrinβ-1上有Cav-1量的增加…………27 在以mevastatin處理後的pcDNA 3.1 Balb/3T3細胞裡, 其integrinβl上也有Cav-1量的增加……27 FAK的降解跟integrinβl上 Cav-1量的增加之情形無關………………………………………………28 電子顯微鏡下分析經由mevastatin處理後的細胞外形…………………………………………………29 Mevastatin誘使pcDNA3.1 Balb/3T3細胞中之PKD增加…………………………………………………29 經過GGTI-286或FTI-277抑制 prenylation作用後,細胞內染測不到活化的integrin complex……30 討論………………………………………………………………………………………………………………32 S-ras ( Q61K) Balb/3T3轉型細胞的生理變化…………………………………………………………32 以mevastatin 阻斷mevalonate pathway後,細胞內Cav-1量之表現…………………………………32 FAK降解(degradation)之生理意義…………………………………………………………………………33 抑制 prenylation作用對細胞造成的影響………………………………………………………………33 未磷酸化的 PKD之生理意義………………………………………………………………………………34 Integrin Complex上的 Cav-1來自於何處………………………………………………………………36 結論………………………………………………………………………………………………………………36 參考文獻…………………………………………………………………………………………………………37 圖表說明…………………………………………………………………………………………………………54 | |
| dc.language.iso | zh-TW | |
| dc.title | Caveolin-1與Integrin Complex在S-ras (Q61K ) Balb/3T3轉型細胞中的互動 | zh_TW |
| dc.title | The Interaction between Caveolin-1 and Integrin Complex in S-ras (Q61K) Balb/3T3 cells | en |
| dc.date.schoolyear | 90-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 83 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
