Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author陳宥樺zh_TW
dc.date.accessioned2021-07-01T08:12:46Z-
dc.date.available2021-07-01T08:12:46Z-
dc.date.issued2002
dc.identifier.citationAbramowitz, A. A., F. L. Hisaw and D. N. Papandrea. (1944). The occurrence of diabetogenic factor in the eyestalks of crustaceans. Biol. Bull., 86: 1-5.
Au, D.W. and I. Orchard. (1994). Characterization of dopamine and serotonin receptors on the salivary gland of the locust Locusta migratoria. Biogenic Amine, 10: 195-211.
Aramant, R. and R. Elfsson. (1976a). Distribution of monoaminergic neuron in the central nervous system of non-malacostacan crustacean. Cell Tissue Res., 166:1-24.
Aramant, R. and R. Elofsson. (1976b). Monoaminergic neurons in the nervons system of crustaceans. Cell Tissue Res., 170: 231-251.
Axelrod, J. and T. D. Reisine. (1984). Stress hormones: Their interaction and regulation. Science, 224:452-459.
Bauchau, A. G. and J. C. Mengeot. (1966). Serotonine et glycemic chez les crustacean. Experiential, 22: 238-239.
Beltz, B. S. and E. A. Kravitz. (1983). Mapping of serotonin-like immunoreactivity in the lobster nervous system. J. Neurosci., 3: 585-602.
Berridge, M. J. (1984). Inositol triphosphate and diacylglycerol as second messengens. Biochem. J., 220: 345-360.
Bulter, T. A. and M. Fingerman. (1983). Concentrations of neurotransmitters in the central nearvous system of Uca panacea and Callinectes sapidus. Amer. Zool., 23: 954-958.
Bulter, T. A. and M. Fingerman. (1985). Effects of dopamine and neuropeptides on the isolated eyestalks of fildder crab. Amer. Zool., 25: 102A.
Chang, E. S., G. D. Prestwich and M. J. Bruce. (1990). Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochem. Biophys. Res. Commun., 171(2): 818-826.
Cooke, I. M. and M. W Goldstone. (1970). Fluorescence localization of monoamines in crab neurosecretory structures. J. Exp. Biol. 53: 651-668.
Cooke, I. M. and R. E. Sullivan. (1982) Hormone and neurosecretion. In: D. E. Bliss (ed.) The Biology of crustacea, Vol. 3: 202-292. Academic press.
Cools, A. R. and J. M. Van Rossum. (1976). Excitation mediating and inhibition mediating dopamine receptor: a new concept toward a better understanding of electropysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia, 45: 243-254.
Cooper, J. R., F. E. Bloom and R. H. Roth. (1991). Dopamine. In: The biochemical basis of neurosecretory structure. J. Exp. Biol., 53: 651-668.
Cournil, N., M. Greffard, M. Moulins and M. Le moal. (1984). Coexistence of dopamine and serotonin in an identified neuron of the lobster nervous system. Brain Res., 310: 397-400.
Dunn, J. F. and P. W. Hochachka. (1987). Elevation of plasma glucose levels by catecholamines in elasmobranch fish. Gen. Comp. Endocrinol., 34: 447-452.
Eastman-Reks, S. and M. Fingerman. (1984). Effect of neuroendocrine tissue and cyclin AMP on ovarian growth in vivo and in vitro in the fiddler crab, Uca pugilator Comp. Biochem. Physiol., 79A: 679-684.
Elekes, K., B. Florey, M. A. Cahill, U. Hoeger and M. Geffard. (1988). Morphology, synaptic connections and neurotransmitters of the efferent neuron of the crayfish hindgut. Symposia Biologica Hungarica, 36: 129-146.
Elofsson, R. (1983). 5-HT-like immunoreactivity in the central nervous system of the crayfish, Pacifasiacus leniusculus. Cell Tissue Res., 232: 221-236.
Elofsson, R., D. Nassel and H. Myhrberg. (1977a). A catecholaminergic neuron connecting optic neuropiles of crayfish. Acta Physiologica Scandinarica Suplementum., 452: 51-54.
Elofsson, R., D. Nassel and H. Myhrberg. (197Th). A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla external) of the crayfish pacifastacus leniusculus. Cell Tissue Res., 182:287-297.
Elofsson, R., L. Laxmyr, E. Rosengren and C. Hansson. (1982). Identification and quantitative measurement of biogenic amines and DOPA in the central nervous system and hemolymph of the crayfish Pacifastacus leniusculus (Crustacea). Comp. Biochem. Physiol., 71C: 195-201.
Elofsson, R., T. Kauri, S. O. Nielson and Stromberg. (1966). Localization of nonoaminergic neurons in the central neurvous system of astacus astacus (Crustacean) Z. Zellforsch., 74: 464-473.
Elofsson, R. and N. Klemm. (1972). Monoamine containing neuron in the optic ganglion of crustacean and insect. Z. Zellforsch., 133: 475-499.
Esch, G. W, J. W. Gibbons and J. E. Bourque. (1975). An analysis of the relationship between stress and parasitism. Am. Midi. Nat., 93: 339-353.
Evans, A. M. and K. L. Green. (1990). The action of dopamine receptor antagonists of the cockroach salivary gland in vitro. Comp. Biochem. Physiol., 97c:283-286.
Falck, B., N. A. Hillarp, G. Thieme and A. Torp. (1962). Fluoresence of catecholamines and related compounds condenses with formaldehyde. J. Histochem. Cytochem., 10: 348-354.
Fingerman, M. (1985). The physiology and pharmacology of crustacean chromatophores. Amer. Zool., 25: 233-252.
Fingerman, M. (1995). Endocrine mechanisms in crayfish, with emphasis on reproduction and neurotransmitter regulation of hormone release. Am Zool., 35: 68-78.
Fingerman, M. and K. Kulkarni. (1993). Qantitative measurement by reverse phase high performance liquid chromatography of norepinephrine in the central nervous system of the red swamp crayfish, Procambarus clarkii and pharmacologically induced alterations. Comp. Biochem. Physiol., 104C:343-352.
Fingerman, M. and S. W Fingerman. (1977). Antagonist action of dopamine and 5-hydroxytryptamine on color change in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol., 58C: 121-127.
Fingerman, M. and R. Nagabhushanam. (1992). Control of the release of crustacean hormones by neuroregulators. Comp. Biochem. Physiol., 102c: 343-352.
Fingerman, M., M. M. Hanumante, U. D. Deshpande and R. Nagabhushanam. (1981). Increasing in the total reducing substance in thehemolymph of the freshwater carb, Barytelphusa guerini, produced by a pestcide (DDT) and an indoleakylamine (serotonin). Experiential., 37: 178-179.
Fingerman, M., R. Nagabhushanam, R. Sarojini and P. S. Reddy. (1994). Biogenic amine in crustaceans: Identification, location and roles. J. Crust. Biol., 14 (3):413-437.
Frienden, E. and L. Harry. (1987). The adrenal hormones. In: Biochemical Endocrinology of the Verterbrates., pp: 111-123.
Gerhardt, C. C., J. E. Leysen, R. J. Planta, E. Vreugdenhil and H. Van Heerikhuizen. (1996). Function characterization of a 5-HT2 receptor cDNA cloned from Lymnaea stagnalis. Eur. J. Pharm., 311: 249-258.
Glowik, R. M., G. Jorge, K. Rainer and M. Eve. (1997). D-Glucose-sensitive neurosecretory cells of the crab Cancer Borealis and negative feedback regulation of blood glucose level. J. Exp. Biol., 200: 1421-1431.
Goldstone, M. W. and I. M. Cooke. (1971). Histochemical localization of monoammes in the crab central nervous system. Z. Zellforsch., 116: 7-19.
Grandy, D. K. and O. Civelli. (1992). G-protein-coupled receptor: the new dopamine receptor subtypes. Current Opinion in Neurobiology, 2: 275-281.
Harrison, R. G. (1907). Observations on the living developing nerve fiber. Proc. Soc. Exp. Biol. Med. 4: 140-143.
Hems, D. A. and P. D. Whitton. (1980) Control of hepatic glycogenesis. Physiol. Rev., 60: 1-50.
Hirashima, A. and M. Eto. (1993). Effect of stress on levels of octopamine, dopamine and serotonin in the American cockroach (Periplaneta americanal.) Comp. Biochem. Physiol., 105c (2): 279-284.
Hoeger, U. and E. Florey. (1989). Catecholamine degradation in the hemolymph of the Chinese crab, Eriocheir sinensis. Comp. Biochem. Physiol., 92c (2):323-327.
Hsu, Y. L., Y. H. Yang, Y. C. Chen, M. C. Tung, J. L. Wu, M. H. Engelking and J. C. Leong. (1995). Development of an in vitro subculture system for prawn tisse. Proceeding of the international symposium on biotechnology applications aquaculture asian fisheries society special publication., 10: pp 161-170.
Kegel, G., B. Reichwein, S. Weese, G. Gaus, J. Peter-Katalinic and R. Keller. (1989). Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS., 225(1): 10-14.
Keller, R. and J. Beyer. (1968). Zur hyperglykamischen wirkung von serotonin mid augenstielextrakten bein flubkrebs Orconectes limosus. Z. Zellforsch. mikrosk. Anat., 59: 78-85.
Keller, R. and D. Sedlmeier. (1988). A metabolic hormone in crustaceans: The hyperglycemic neuropeptide. In: Endocrinology of selected invertebrate types. ed: Laufer, H. and R. G. H. Downer., pp 315-326. A. R. Liss, New York.
Keller, R., P. P. Jaros and G.. Kegel. (1985). Crustacean hyperglycemiac neuropeptides. Amer. Zool., 25: 207-221.
Kennedy, M. B. (1978). Products of biogenic amine metabolism in the lobster: sulfate conjucates. J. Neurochem., 30: 315-320
Kleinholz, L. H. (1976). Crustacean neurosecretory hormones and physiological specificity. Am. Zool., 16:151-166.
Kleinholz, L. H. and R. Keller. (1973). Comparative studies in crustacean neurosecretiry hyperglycemic hormones. In: The initial survey. Gen. Comp. Endocrinol., 21: 554-564.
Kulkarni, G. K. and M. Fingerman. (1986). Distal retinal pigment of the fiddler crab, Uca pugilator: Evidances for stimulation of release of light adapting and dark adapting hormones by neurotransmitter. Comp. Biochem. Physiol., 84C:219-224.
Kulkarni, G. K. and M. Fingerman. (1992). Effects of 5-hydroxytryptamine agonist on ovarian development in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol., 101C: 419-423.
Kuo, C. M. and Y. H. Yang. (1999). Hyperglycemic reponses of cold shock in the freshwater giant prawn, Macrobranchium rosenbergii. J. Comp. Physiol., 169b:49-54.
Kuo, C. M., C. J. Hsu and Lin, C. Y (1995). Hyperglycemic effect of dopamine in tiger shrimp, Penaeus monodon. Aquaculture, 135: 161-172.
Laxmyr, L. (1984). Biogenic amines and DOPA in the central nervous system of decapod crustacean. Comp. Biochem. Physiol., 77C: 139-143.
Lee, C. Y., S. M. Yau, C. S. Liau and W J. Hung (2000). Serotonergic regulation of blood glucose levels in the crayfish, Procambarus clarkii: site of action and receptor characterization. J. Exp. Zool., 286: 596-605.
Leffler, J. W. (1978). Ecosystem responses to stress in aquatic microcosms. In: Energy and environmental stress in aquatic ecosystems. ed: J. H. Thorp. and J. W. Gibbsons., pp 102-119. Technical Information Center, U.S Department of energy. CONF-771114.
Leuven, RE-EW, P. P. Jaros., F. Van Herp. and R. Keller. (1982). Species or group specificity in biologic a immunological studies of crustacean hyperglycemic hormone. Gen. Comp. Endocrinol., 46: 288-296.
Lin, C. Y, S. H. Chen, G. H. Kuo and C. M. Kuo. (1998). Identification and characterization of a hyperglycemic hormone from freshwater giant prawn, Macrobranchium rosenbergii. Comp. Biochem. Physiol., 121a: 315-321.
Livingstone, M. S., S. F. Schaeffer. and E. A. Karvitz. (1981). Biochemistry and ultrastructure of serotonergic nerve endings in the lobster: serotonin and octopamine are contained in different nerve endings. J. Neurobiol., 12: 27-54.
Luschen, W, Willig A. and Jaros, P. P. (1993). The role of biogenic amities in the control of blood glucose level in the decapod crustacean, Carcinus maenas L.. Comp. Biochem. Physiol., 105C: 291-296.
Marmaras, V. J. and E. G. Fragoulis. (1971). Studies on the metabolism of 14C-DOPA in hepatopancreas of decapod crustacean Upogebia littoralis. Comp. Gen. Pharmacol., 2: 52-58.
Martin, G. (1978). Action de la s?rotonine sur la glyc?mie et sur la liberation des neuros?cr?tions continues dans la glande du sinus de Procellio dilataus Brandt (Crustac?, Isopede, Oniscoide). C. R. Soc. Biol., 172: 304-307.
Mathews, C. K. and K. E. van Holde. (1990). Integration and control of metabolic processes. In Biochemistry: 779-814. The Benjamin/Cummings Publishing Company, Inc. Redwood City, California.
Mattson, M. P. and E. Spazini. (1985). 5-hydroxytryptamine mediates release of molt-inhibiting hormone activity from isolate crab eyestalk ganglia. Biol. Bull., 169: 246-255.
Mazeaud, M. M. and F. Mazeaud. (1981). Adrenergic responses to stress in fish. In: Stress and fish. ed: Pickering. A. D. pp: 49-76. Academic press. Inc. Ltd. London.
Mazeaud, M. M., F. Mazeaud and E. M. Donaldson. (1977). Primary and secondary effects stress in fish: Some new data with a general review. Trans. Am. Fish. Soc., 106(3): 201-212.
Mckinley, S. J. and R. H. Jeffrey. (1993). Epinephrine stimulation of glucose release from perfused trout liver: effects of assay and acclimation temperature. J. Exp. Biol., 177: 51-62.
Meier, R. L. (1972). Communications stress. A. Rev. Ecol. Systemat., 3: 289-314.
Mercier, A. J., I. Orchard. and A. Schmoeckel. (1991). Catecholaminergic neurons supplying the hindgut of the crayfish, Procambarus clarkii. J. Zool., 69:2778-2785.
Moon, T. w., P. J. Walsh. and T. P. Mommsen. (1985). Can. J. Fish. Aquat. Sci., 42:1772-1782.
Nagamine et al. (1980). Gen. Comp. Endocrinol., 49: 423-44 1.
Osborne, N. N. and M. R. Dondo. (1970). Monoamines in the stomatogasteic ganglion of the lobster Homarus vulgaris. Comp. Biochem. Physiol., 32:327-331.
Ottariani, E., E. Caselgrandi., F. Petraglia. and C. Franceschi. (1992). Stress response in the freshwater snail planorbarius corneus (L.) (Gastropoda, Pulmonata): Interaction between CRF, ACTH, and biogenic amines. Gen. Comp. Endocrinol., 87: 354-360.
Perry, S. F., R. Fritsche. and S. Thomas. (1993). Storage and release of catecholamine from the chromaffin tissue of the Atlantic hangfish Myxine glutinosa. J. Exp. Biol., 183: 165-184.
Pickering, A. D. (1981). Introduction: the concept of biological stress. In A. D. Pickering (ed.) Stress and fish: 49-76. Academic Press, Inc. Ltd. London.
Rothe, H., W. L?schen, A. Asken, A. Willig and P. P. Jaros. (1991). Purified crustacean enkephalin inhibits release of hyperglycemic hormone in the crab Carcinus maenas L. Comp. Biochem. Physiol., 99C(1-2): 57-62.
Quackenbush, L. S. and M. Fingerman. (1984). Regulation of the release of chromatophorotropic neurohormone from the isolation eyestalk of fiddler crab, Uca pugilator. Biol. Bull., 166: 237-250.
Rao, K. R. and M. Fingerman. (1983). Regulation of release and mode of action of crustacean chromatophorotropins. Amer. Zool., 23: 517-527.
Reid, J. L. and J. Vincent. (1986). Clinical pharmacology and therapentic role of prazosin and related alpha-adrenoceptor antagonists. Cardiology, 73: 164-174.
Rhoades, R. and R. Pflanzer. (1989). Cullular control mechanism. In: Human physiology. Saunders college publishing, pp 136-178.
Sandou, F. and R. Hen. (1994). 5-hydroxytryptamine receptor subtypes in vertebrate and invertebrate. Neurochem. Int., 25: 503-532.
Santos, E. A. and R. Keller. (1993). Regulation of circulating levels of the crustacean hyperglycemic hormone: evidence for a dual feedback control system. J. Comp. Physiol, 163B: 374-379.
Sarojini, R., N. Rachakonda. and F. Milton. (1995). Dopaminergic and enkephalinergic involvement in the regulation of blood glucose in the red swamp crayfish procambarus clarkii. Gen. Comp. Endocrinol., 97: 160-170.
Sarojini, R., R. Nagabhushanam. and M. Fingerman. (1995). Dopaminergic and enkephalinergic involvement in the regulation of blood glucose in the red swamp crayfish procambarus clarkii. Gen. Comp. Endocrinol., 97: 160-170.
Saudou, F., Boschert, U., Amlaiky, N., Plassat, J. L. and Hen, R. (1992). A family of Drosophila serotonin receptor with distinct intracellular signaling properties and expression patterns. EMBO J., 11: 7-17.
Sedlmeier, D. (1982). The mode of action of the crustacean neurosecretory hyperglycemic hormone (CHH). II. Involvement of glycogen synthase. Gen. Comp. Endocrinol., 47: 426-432.
Sedlmeier, D. (1989). Glycogenolytic action of 5-hydroxytyptamine in crayfish hepatopancreas. Gen. Comp. Endocrinol., 74: 275-276.
Sibley, D. R. and F. J. Monsma, Jr. (1992). Molenular biology of dopamine receptor. Trends Pharmacol. Sci., 13: 61-69.
Sokoloff, P., M. P. Martres., M. Delandre., K. Redouane. and J. C. Schwartz. (1984). [3 H] domperidone binding site differ in rat striatum and pituitary. Naunyn-Schmiedegerg’s Arch. Pharmac., 327: 221-227.
Stanaszek, W. F., D. Kellerman., R. N. Brogden. and J. A. Romankiewicz. (1983). Prazosin Update: A review of its pharmacological properties and therapeutic use in hypertention and congestive heart failure. Drungs, 25: 339-384.
Strange, D. G. (1993). New insights into dopamine receptors in the central nerrous system. Neurochem. Int., 22: 223-236.
Strolenberg, G. E. C., and F. van Herp. (1977). Mise en evidence du phenomene d exocytose dans la glande du sinus d Astacus leptodactylus (Nordmann) sous 1 influenced injections de serotonine. Comptes Rendus de 1 Academie des Science, Paris, 284D: 57-59.
Suarez, R. and T. P. Mommsen. (1987). Gluconeogenesis in teleost fishes. Can. J. Zool., 65: 1869-1882.
Sugamori, K. S., R. K. Sunahara., H. C. Guan., A. G. M. Bulloch., C. P. Tensen., P. Seeman., B. NiznikH. and H. H. M. Vantol. (1993). Serotonin receptor cDNA cloned from Lymnaea-stagnalis. Proc. Nat. Acad. Sci., U.S.A., 90: 11-15.
Tensen, C. P., D. P. V. de Kleijin. and F. van Herp. (1991). Cloning and sequence analysis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus. Eur. J. Biochem., 200: 103-106.
Vaite, J. H. (1992). The DOPA ephemera: a recurrent motif in invertebrates. Biol. Bull., 83: 178-184.
Waite, J. H. (1992). The DOPA ephemera: a recurrent motif in invertebrate. Biol. Bull., 183: 178-184.
Weiner, N. and P. B. Molinoff. (1995). Catecholamines. In Basic Neurochemistry. ed: G. J. Siegel, B. W Albers and P. B. Molinoff pp: 26 1-282. Raven Press, Ltd., New York.
Witz, P., N. Amlaiky., J. L. Plassat., L. Maroteaux., E. Borrelli. and R. Hen. (1990). Cloning and characterization of a Drosophila serotonin receptor that activate adenylyl cyclase. Proc. Nat. Acad. Sci., U.S.A 87, 8940-8944.
Wright, P. A., S. F. Perry. and T. W Moon. (1989). Regulation hepatic glucosneogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J. Exp. Biol., 147: 169-188.
Wulle, I., M. Kirsch. and H. J. Wanger. (1990). Cyclic changes in dopamine and DOPA content, and tyrosine hydroxylase activity in the retina of a cichlid fish. Brain. Res., 515: 163-167.
Zatta, P. (1987). Dopamine, noradrenaline and serotonin during hypo-osmotic tress of carcinus maenas. Marine Biol., 96: 479-481.
Zifa, E. and G.. Fillion. (1992). 5-hydroxytryptamine receptors. Pharmacol Rev., 44: 401-458.
林仲彥(1993).草蝦高糖激素之純化與特性研究。台大漁科所碩士論文。
許晉榮(1993).多巴胺對對蝦血糖代謝及生殖之調控。台大漁科所碩士論文。
楊詠翔(1995).低溫刺激下正腎上腺素對淡水長臂大蝦血糖之影響。台大漁科所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75346-
dc.description.abstract生物胺種類包括多巴(DOPA)、多巴胺(dopamine)、腎上腺素(epinephrine)、正腎上腺素(norepinephrine)、章魚涎胺(Octoamine)及血清動素(serotonin)等等,在甲殼類神經系統的分佈相當廣泛,所扮演的角色為神經傳導物(Neurotransmitter)及神經調節物(Neuroregulator)在生理的調控上具有多方面之功能,例如,調節呼吸、心跳速率,血糖、滲透壓之調整,甲殼之硬化作用,體色改變,組織修復,以及免疫反應等,甚至在行為方面也扮演著重要的角色。
動物個體必須消耗能量以為維持自身之生存、成長、生殖等生理機能,而葡萄糖即扮演著主要能量供應者的角色,因此血糖值可作為反應生理狀況之生理指標。本研究以淡水長臂大蝦(Macrobrachium rosenbergii)實驗材料,探討正腎上腺素(NE)、腎上腺素(E)、多巴胺(DA)血清動素(5-HT)四種生物胺對血糖之調節作用、作用途徑及作用受器。
為了釐清淡水長臂大蝦之血糖調控方式,本研究以淡水長臂大蝦肝胰臟及肌肉組織進行體外培養,利用NE、E、DA、5-HT進行外源刺激,藥劑處理後兩小時進行採樣,並更換培養基,追加生物胺使之維持固定實驗濃度。檢測追蹤樣品中葡萄糖含量變化,研究結果發現四種生物胺皆會促進肝胰臟及肌肉組織之葡萄糖釋放能力,並顯示該四種生物胺對於血糖之促進作用是不需透過眼柄中X-器官竇腺複合體(X-Organ sinus gland complex)所分泌之CHH,亦證實肝胰臟組織為淡水長臂大蝦之主要血糖供應組織。
在生物胺配合不同型接受器(receptors)之拮抗劑之處理中,發現正腎上腺素之作用受器為α1及βl,、腎上腺素之作用受器為α1其次為βl,多巴胺之主要作用受器為D1,血清動素之主要作用受器為5HT 2。此部份實驗純粹為藥理性研究,所使用受器拮抗劑皆研發自哺乳類動物,而甲殼類生物與哺乳類動物間之生物胺作用受器是否具有高度之相似性,對拮抗劑之親和力是否雷同等等,仍須進一步之研究。
zh_TW
dc.description.abstractBiogenic amines, dopa, dopamine, norepinephrine, epinephrine, octopamine, serotonin, and others, are widely distributed in the neural system and ganglia of crustaceans. They, as neurotransmitters and neuroregulators, are involved in regulating a wide spectrum of important physiological processes in organisms. Included are respiratory regulation, heart beating, glycemia, osmoregulation, hardening of exoskeleton, body coloration, immune and behavioral responses as well.
The physiological homeostasis and homeokinesis of animals are maintained through constant physiological compensation and regulation, which depend heavily on the sufficient supply of energy. Glucose, generally considered as an important energy sources in a variety of organisms and is frequently used as a biological indicator of the physiological conditions.
The objectives of the present research are aimed to clarify the modes and pathways of the actions of norepinephrine, epinephrine, dopamine and serotonin in the glycemic responses of Macrobrachium rosenbergii in vitro. The goal is approached by incubation of the hepatopancreas tissue with biogenic amine alone or with the combination of biogenic amine and its specific receptor antagonists, and the responses were monitored by quantifying the glucose content in the culture medium at 2 hr intervals. The culture medium and biogenic amines experimented are replenished at the same time. The results revealed that all the biogenic amines examined in this study, do enhance the glucose release from the hepatopancreas and muscular tissues. This suggests that the hyperglycemic response is not necessarily mediated through the actions of CIIH, secreted and released from x-organ sinus gland complex. In the meantime, the hepatopancreas can be considered to be more important for the source of energy supply, when the glucose released at a specific dose is compared.
In addition, the pathways of the actions of the biogenic amines is summaried as follows: the actions is mediated through αl and β1 for norepinephrine and epinephrine , and through D1 and 5-HT2 for dopamine and 5-HT , respectively , The pharmacological research strategies were followed in this study , and the antagonists employed were all developed in mammals . The homology of the receptors of NE, E, DA and 5-HT, and the affinity of antagonists to various receptors between the freshwater giant prawn and mammals are still unknown and remained for further elucidation.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:46Z (GMT). No. of bitstreams: 0
Previous issue date: 2002
en
dc.description.tableofcontents摘要………………………I
壹、前言…………………1
貳、材料方法……………17
一、實驗材料
二、實驗方法
三、試驗項目
參、結果…………………29
一、正腎上腺素及其相關藥物對血糖值之影響
二、腎上腺素及其相關藥物對血糖值之影響
三、多巴胺及其相關藥物對血糖值之影響
四、血清動素及其相關藥物對血糖值之影響
肆、討論…………………52
伍、參考文獻……………62
陸、圖表…………………69
柒、附錄…………………105
dc.language.isozh-TW
dc.title利用體外培養的方式探討生物胺對淡水長臂大蝦(Macrobrachium rosenbergii)促血糖生成作用之研究zh_TW
dc.titleGlycemic Effects of Biogenic Amines in Freshwater Giant Prawn, Macrobrachium
rosenbergii In Vitro
en
dc.date.schoolyear90-2
dc.description.degree碩士
dc.relation.page114
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved