請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75320
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Hsin-Yi Chen | en |
dc.contributor.author | 陳心怡 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:40Z | - |
dc.date.available | 2021-07-01T08:12:40Z | - |
dc.date.issued | 2002 | |
dc.identifier.citation | 1. Abrieu A, Brassac T, Galas S, Fisher D, Labbe JC, & Doree M. (1998) The Polo-like kinase Plxl is a component of the MPF amplification loop at the G2/M-phase transition of the cell cycle in Xenopus eggs. J Cell Sci. 111 (Pt 12):1751-7. 2. Abrieu A, Doree M, & Fisher D. (2001) The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. J Cell Sci. 114(Pt 2):257-67. 3. Adams RR, Carmena M, & Earnshaw WC. (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11(2):49-54. 4. Andersen SS. (1999) Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. Bioessays. 21(1):53-60. 5. Balakier H, & Czolowska R. (1977) Cytoplasmic control of nuclear maturation in mouse oocytes. Exp Cell Res. 110(2):466-9. 6. Balakier H, & Masui Y. (1986) Chromosome condensation activity in the cytoplasm of anucleate and nucleate fragments of mouse oocytes. Dev Biol. 113(1):155-9. 7. Bamba C, Bobinnec Y, Fukuda M, & Nishida E. (2002) The GTPase Ran Regulates Chromosome Positioning and Nuclear Envelope Assembly In Vivo. Curr Biol. 12(6):503-7. 8. Bhatt RR, & Ferrell JE Jr. (1999) The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science. 286(5443):1362-5. 9. Bidwai AP, Reed JC, & Glover CV. (1993) Phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit. Arch Biochem Biophys. 300(1):265-70. 10. Cardenas ME, Dang Q, Glover CV, & Gasser SM. (1992) Casein kinase II phosphorylates the eukaryote-specific C-terminal domain of topoisomerase II in vivo. EMBO J. 11(5):1785-96. 11. Castro A, Peter M, Magnaghi-Jaulin L, Vigneron S, Galas S, Lorca T, & Labbe JC. (2001) Cyclin B/cdc2 induces c-Mos stability by direct phosphorylation in Xenopus oocytes. Mol Biol Cell. 12(9):2660-71. 12. Chen M, & Cooper JA. (1995) Ser-3 is important for regulating Mos interaction with and stimulation of mitogen-activated protein kinase kinase. Mol Cell Biol. 15(9):4727-34. 13. Chen M, Li D, Krebs EG, & Cooper JA. (1997) The casein kinase II beta subunit binds to Mos and inhibits Mos activity. Mol Cell Biol. 17(4):1904-12. 14. Choi T, Fukasawa K, Zhou R, Tessarollo L, Borror K, Resau J, & Vande Woude GF. (1996) The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes. Proc Natl Acad Sci U S A. 93(14):7032-5. 15. Clarke PR, Klebe C, Wittinghofer A, & Karsenti E. (1995) Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase. J Cell Sci. 108 (Pt 3):1217-25. 16. Cross DA, & Smythe C. (1998) PD 98059 prevents establishment of the spindle assembly checkpoint and inhibits the G2-M transition in meiotic but not mitotic cell cycles in Xenopus. Exp Cell. Res. 241(1):12-22. 17. De Souza CP, Osmani AH, Wu LP, Spotts JL, & Osmani SA. (2000) Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell. 102(3):293-302. 18. Desai A, & Mitchison TJ. (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 13:83-117. 19. Descombes P, & Nigg EA. (1998) The polo-like kinase Plxl is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. EMBO J. 17(5):1328-35. 20. Di Agostino S, Rossi P, Geremia R, & Sette C. (2002) The MAPK pathway triggers activation of Nek2 during chromosome condensation in mouse spermatocytes. Development. 129(7):1715-27. 21. Duesbery NS, Choi T, Brown KD, Wood KW, Resau J, Fukasawa K, Cleveland DW, & Vande Woude GF. (1997) CENP-E is an essential kinetochore motor in maturing oocytes and is masked during mos-dependent, cell cycle arrest at metaphase II. Proc Natl Acad Sci U S A. 94(17):9165-70. 22. Ferby I, Blazquez M, Palmer A, Eritja R, & Nebreda AR. (1999) A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 13(16):2177-89. 23. Ferrell JE Jr. (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays. 21(10):833-42. 24. Fisher DL, Brassac T, Galas S, & Doree M. (1999) Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development. 126(20):4537-46. 25. Fisher DL, Mandart E, & Doree M. (2000) Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO J. 19(7):1516-24. 26. Freeman RS, Meyer AN, Li J, & Donoghue DJ. (1992) Phosphorylation of conserved serine residues does not regulate the ability of mosxe protein kinase to induce oocyte maturation or function as cytostatic factor. J Cell Biol. 116(3):725-35. 27. Fry AM, Arnaud L, & Nigg EA. (1999) Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J Biol Chem 274(23):16304-10. 28. Fry AM, Descombes P, Twomey C, Bacchieri R, & Nigg EA. (2000) The NIMA-related kinase X-Nek2B is required for efficient assembly of the zygotic centrosome in Xenopus laevis. J Cell Sci. 113 (Pt 11):1973-84. 29. Fry AM, & Nigg EA. (1995) Cell cycle. The NIMA kinase joins forces with Cdc2. Curr Biol. 5(10):1122-5. 30. Fujioka T, Takebayashi Y, Ito M, & Uchida T. (2000) Nek2 expression and localization in porcine oocyte during maturation. Biochem Biophys Res Commun. 279(3):799-802. 31. Furuno N, Nishizawa M, Okazaki K, Tanaka H, Iwashita J, Nakajo N, Ogawa Y, & Sagata N. (1994) Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 13(10):2399-410. 32. Gavin AC, Cavadore JC, & Schorderet-Slatkine S. (1994) Histone H1 kinase activity, germinal vesicle breakdown and M phase entry in mouse oocytes. J Cell Sci. 107 (Pt 1):275-83. 33. Gietz RD, Graham KC, & Litchfield DW. (1995) Interactions between the subunits of casein kinase II. J Biol Chem. 270(22):13017-21. 34. Gotoh Y, Masuyama N, Dell K, Shirakabe K, & Nishida E. (1995) Initiation of Xenopus oocyte maturation by activation of the mitogen-activated protein kinase cascade. J Biol Chem. 270(43):25898-904. 35. Gross SD, Schwab MS, Taieb FE, Lewellyn AL, Qian YW, & Maller JL. (2000) The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90 (Rsk). Curr Biol. 10(8):430-8 36. Gruss OJ, Carazo-Salas RE, Schatz CA, Guarguaglini G, Kast J, Wilm M, Le Bot N, Vernos I, Karsenti E, & Mattaj IW. (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 104(1):83-93. 37. Ha Kim Y, Yeol Choi J, Jeong Y, Wolgemuth DJ, & Rhee K. (2002) Nek2 localizes to multiple sites in mitotic cells, suggesting its involvement in multiple cellular functions during the cell cycle. Biochem Biophys Res Commun. 290(2):730-6. 38. Haccard O, Lewellyn A, Hartley RS, Erikson E, & Maller JL. (1995) Induction of Xenopus oocyte meiotic maturation by MAP kinase. Dev Biol. 168(2):677-82. 39. Haccard O, Sarcevic B, Lewellyn A, Hartley R, Roy L, Izumi T, Erikson E, & Maller JL. (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science. 262(5137):1262-5. 40. Hagting A, Jackman M, Simpson K, & Pines J. (1999) Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol. 9(13):680-9. 41. Hames RS, & Fry AM. (2002) Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis. Biochem J. 361(Pt 1):77-85. 42. Hames RS, Wattam SL, Yamano H, Bacchieri R, & Fry AM. (2001) APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J. 20(24):7117-27. 43. Heald R. (2000) Motor function in the mitotic spindle. Cell. 102(4):399-402. 44. Helmbrecht K, Zeise E, & Rensing L. (2000) Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif. 33(6):341-65. 45. Helps NR, Luo X, Barker HM, & Cohen PT. (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J. 349(Pt 2):509-18. 46. Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, Rauch CT, Bird TA, & Virca GD. (2002) Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem. 277(18):16229-40. 47. Howard EL, Charlesworth A, Welk J, & MacNicol AM. (1999) The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Mol Cell Biol. 19(3):1990-9. 48. Hsu JY, Sun ZW, Li X, Reuben M, Tatchell K, Bishop DK, Grushcow JM, Brame CJ, Caldwell JA, Hunt DF, Lin R, Smith MM, & Allis CD. (2000) Mitotic phosphorylation of histone H3 is governed by Ipll/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell. 102(3):279-91. 49. Huang W, Kessler DS, & Erikson RL. (1995) Biochemical and biological analysis of Mekl phosphorylation site mutants. Mol Biol Cell. 6(3):237-45. 50. Huitorel P, & Kirschner MW. (1988) The polarity and stability of microtubule capture by the kinetochore. J Cell Biol. 106(1):151-9. 51. Hunt T. (1989) Embryology. Under arrest in the cell cycle. Nature. 342(6249):483-4. 52. Huse M, & Kuriyan J. (2002) The conformational plasticity of protein kinases. Cell. 109(3):275-82. 53. Iwashita J, Hayano Y, & Sagata N. (1998) Essential role of germinal vesicle material in the meiotic cell cycle of Xenopus oocytes. Proc Natl Acad Sci U S A. 95(8):4392-7. 54. Izumi T, & Maller JL. (1991) Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions. Mol Cell Biol. 11(8):3860-7. 55. Joseph J, Tan SH, Karpova TS, McNally JG, & Dasso M. (2002) SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J Cell Biol. 156(4):595-602. 56. Karaiskou A, Dupre A, Haccard O, & Jessus C. (2001) From progesterone to active Cdc2 in Xenopus oocytes: a puzzling signalling pathway. Biol Cell. 93(1-2):35-46. 57. Karaiskou A, Jessus C, Brassac T, & Ozon R. (1999) Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci. 112 (Pt 21):3747-56. 58. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C, & Nebreda AR. (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem. 276(38):36028-34. 59. Kimura K, Hirano M, Kobayashi R, & Hirano T. (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science. 282(5388):487-90. 60. King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, & Kirschner MW. (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell. 81(2):279-88. 61. Kirschner M, & Mitchison T. (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell. 45(3):329-42. 62. Kornbluth S, Dasso M, & Newport J. (1994) Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression. J Cell Biol. 125(4):705-19. 63. Kosako H, Nishida E, & Gotoh Y. (1993) cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J. 12(2):787-94. 64. Kumagai A, & Dunphy WG. (1996) Purification and molecular cloning of Plxl, a Cdc25-regulatory kinase from Xenopus egg extracts. Science. 273(5280):1377-80. 65. Larsson N, Marklund U, Gradin HM, Brattsand G, & Gullberg M. (1997) Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol. 17(9):5530-9. 66. Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, & Donoghue DJ. (1999) Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J. 18(7):1869-77. 67. Liu H, Vuyyuru VB, Pham CD, Yang Y, & Singh B. (1999) Evidence of an interaction between Mos and Hsp70: a role of the Mos residue serine 3 in mediating Hsp70 association. Oncogene. 18(23):3461-70. 68. Lorca T, Castro A, Martinez AM, Vigneron S, Morin N, Sigrist S, Lehner C, Doree M, & Labbe JC. (1998) Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17(13):3565-75. 69. Lorca T. (1993) Control of cell division in eucaryotes. Pathol Biol (Paris). 41(3):260-7. 70. Lowe M, Rabouille C, Nakamura N, Watson R, Jackman M, Jamsa E, Rahman D, Pappin DJ, & Warren G. (1998) Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell. 94(6):783-93. 71. Lu KP, & Hunter T. (1995) Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell. 81(3):413-24. 72. Lu KP, & Means AR. (1994) Expression of the noncatalytic domain of the NIMA kinase causes a G2 arrest in Aspergillus nidulans. EMBO J. 13(9):2103-13. 73. Masui Y, & Markert CL. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool. 177(2):129-45. 74. Matsumoto T, & Beach D. (1991)Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell. 66(2):347-60. 75. Matten WT, Copeland TD, Ahn NG, & Vande Woude GF. (1996) Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev Biol. 179(2):485-92. 76. Mendez R, Hake LE, Andresson T, Littlepage LE, Ruderman JV, & Richter JD. (2000) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature. 404(6775):302-7. 77. Minshull J, Sun H, Tonks NK, & Murray AW. (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 79(3):475-86. 78. Moore JD, Yang J, Truant R, & Kornbluth S. (1999) Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol. 144(2):213-24. 79. Murakami MS, & Vande Woude GF. (1998) Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-weel and Mos. Development. 125(2):237-48. 80. Murphy R, Watkins JL, & Wente SR. (1996) GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell. 7(12):1921-37. 81. Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, & Weis K. (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell. 104(1):95-106. 82. Nigg EA. (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 17(6):471-80. 83. Nishizawa M, Okazaki K, Furuno N, Watanabe N, & Sagata N. (1992) The 'second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J. 11(7):2433-46. 84. Ohba T, Nakamura M, Nishitani H, & Nishimoto T. (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science. 284(5418):1356-8. 85. Ohba T, Seki T, Azuma Y, & Nishimoto T. (1996) Premature chromatin condensation induced by loss of RCC1 is inhibited by GTP- and GTPgammaS-Ran, but not GDP-Ran. J Biol Chem. 271(25):14665-7. 86. Ohsumi K, Sawada W, & Kishimoto T. (1994) Meiosis-specific cell cycle regulation in maturing Xenopus oocytes. J Cell Sci. 107 (Pt 11):3005-13. 87. O'Keefe SJ, Kiessling AA, & Cooper GM. (1991) The c-mos gene product is required for cyclin B accumulation during meiosis of mouse eggs. Proc Natl Acad Sci U S A. 88(17):7869-72. 88. Ookata K, Hisanaga S, Okano T, Tachibana K, & Kishimoto T. (1992) Relocation and distinct subcellular localization of p34cdc2-cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 11(5):1763-72. 89. Osmani AH, McGuire SL, & Osmani SA. (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell. 67(2):283-91. 90. Osmani SA, Pu RT, & Morris NR. (1988) Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell. 53(2):237-44. 91. Palmer A, Gavin AC, & Nebreda AR. (1998) A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Mytl. EMBO J. 17(17):5037-47. 92. Peters JM, King RW, Hoog C, & Kirschner MW. (1996)Identification of BIME as a subunit of the anaphase-promoting complex. Science. 274(5290):1199-201. 93. Pfleger CM, & Kirschner MW. (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdhl. Genes Dev. 14(6):655-65. 94. Pham CD, Vuyyuru VB, Yang Y, Bai W, & Singh B. (1999) Evidence for an important role of serine 16 and its phosphorylation in the stabilization of c-Mos. Oncogene. 18(30):4287-94. 95. Picard A, Galas S, Peaucellier G, & Doree M. (1996) Newly assembled cyclin B-cdc2 kinase is required to suppress DNA replication between meiosis I and meiosis II in starfish oocytes. EMBO J. 15(14):3590-8. 96. Pickham KM, Meyer AN, Li J, & Donoghue DJ. (1992) Requirement of mosXe protein kinase for meiotic maturation of Xenopus oocytes induced by a cdc2 mutant lacking regulatory phosphorylation sites. Mol Cell Biol. 12(7):3192-203. 97. Pines J, & Hunter T. (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol. 115(1):1-17. 98. Qian YW, Erikson E, & Maller JL. (1998) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plxl. Science. 282(5394):1701-4. 99. Rhee K, & Wolgemuth DJ. (1997) The NIMA-related kinase 2, Nek2, is expressed in specific stages of the meiotic cell cycle and associates with meiotic chromosomes. Development. 124(11):2167-77. 100. Robertson SC, & Donoghue DJ. (1996) Identification of an autoinhibitory region in the activation loop of the Mos protein kinase. Mol Cell Biol. 16(7):3472-9. 101. Sagata N, Daar I, Oskarsson M, Showalter SD, & Vande Woude GF. (1989) The product of the mos proto-oncogene as a candidate initiator for oocyte maturation. Science. 245(4918):643-6. 102. Sagata N, Oskarsson M, Copeland T, Brumbaugh J, & Vande Woude GF. (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature. 335(6190):519-25. 103. Sagata N. (1997) What does Mos do in oocytes and somatic cells Bioessays. 19(1):13-21. 104. Sazer S, & Nurse P. (1994) A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J. 13(3):606-15. 105. Schagger H, & von Jagow G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166(2):368-79. 106. Schultz SJ, Fry AM, Sutterlin C, Ried T, & Nigg EA. (1994) Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ. 5(6):625-35. 107. Schwab M, Lutum AS, & Seufert W. (1997) Yeast Hctl is a regulator of Clb2 cyclin proteolysis. Cell. 90(4):683-93. 108. Schwab MS, Roberts BT, Gross SD, Tunquist BJ, Taieb FE, Lewellyn AL, & Maller JL. (2001) Bubl is activated by the protein kinase p90(Rsk) during Xenopus oocyte maturation. Curr Biol 11(3):141-50 109. Seki T, Yamashita K, Nishitani H, Takagi T, Russell P, & Nishimoto T. (1992) Chromosome condensation caused by loss of RCC1 function requires the cdc25C protein that is located in the cytoplasm. Mol Biol Cell. 3(12):1373-88. 110. Skoblina MN, Pivnitsky KK, & Kondratieva OT. (1984) The role of germinal vesicle in maturation of Pleurodeles waltlii oocytes induced by steroids. Cell Differ. 14(2):153-7. 111. Stepanova L, Finegold M, DeMayo F, Schmidt EV, & Harper JW. (2000) The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol. 20(12):4462-73. 112. Stepanova L, Leng X, Parker SB, & Harper JW. (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10(12):1491-502. 113. Stueland CS, Lew DJ, Cismowski MJ, & Reed SI.. (1993) Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae. Mol Cell Biol. 13(6):3744-55. 114. Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, & Hershko A. (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell. 6(2):185-97. 115. Sutani T, Yuasa T, Tomonaga T, Dohmae N, Takio K, & Yanagida M. (1999) Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13(17):2271-83. 116. Tanaka K, Parvinen M, & Nigg EA. (1997) The in vivo expression pattern of mouse Nek2, a NIMA-related kinase, indicates a role in both mitosis and meiosis. Exp Cell Res. 237(2):264-74. 117. Uto K, Nakajo N, & Sagata N. (1999) two structural variants of Nek2 kinase, termed Nek2A and Nek2B, are differentially expressed in Xenopus tissues and development. Dev Biol. 208(2):456-64. 118. Uto K, & Sagata N. (2000) Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 19(8):1816-26. 119. Utrera R, Collavin L, Lazarevic D, Delia D, & Schneider C. (1998) A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression. EMBO J. 17(17):5015-25. 120. Verlhac MH, Kubiak JZ, Weber M, Geraud G, Colledge WH, Evans MJ, & Maro B. (1996) Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse. Development. 122(3):815-22. 121. Verlhac MH, Lefebvre C, Guillaud P, Rassinier P, & Maro B. (2000) Asymmetric division in mouse oocytes: with or without Mos. Curr Biol. 10(20):1303-6. 122. Wandosell F, Serrano L, Hernandez MA, & Avila J. (1986) Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem. 261(22):10332-9. 123. Wang XM, Yew N, Peloquin JG, Vande Woude GF, & Borisy GG. (1994) Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression. Proc Natl Acad Sci U S A. 91(18):8329-33 124. Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, & Zheng Y. (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science. 291(5504):653-6. 125. Wilde A, & Zheng Y. (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science. 284(5418):1359-62. 126. Wu L, Osmani SA, & Mirabito PM. (1998) A role for NIMA in the nuclear localization of cyclin B in Aspergillus nidulans. J Cell Biol. 141(7):1575-87. 127. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, & Kornbluth S. (1998) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev. 12(14):2131-43. 128. Ye XS, Xu G, Pu RT, Fincher RR, McGuire SL, Osmani AH, & Osmani SA. (1995) The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases. EMBO J. 14(5):986-94. 129. Yew N, Mellini ML, & Vande Woude GF. (1992) Meiotic initiation by the mos protein in Xenopus. Nature. 355(6361):649-52. 130. Zhou RP, Oskarsson M, Paules RS, Schulz N, Cleveland D, & Vande Woude GF. (1991) Ability of the c-mos product to associate with and phosphorylate tubulin. Science. 251(4994):671-5. 131. Zhou RP, Shen RL, Pinto da Silva P, & Vande Woude GF. (1991) In vitro and in vivo characterization of pp39mos association with tubulin. Cell Growth Differ. 2(5):257-65. 132. Ziegler D, & Masui Y. (1976) Control of chromosome behavior in amphibian oocytes. II. The effect of inhibitors of RNA and protein synthesis on the induction of chromosome condensation in transplanted brain nuclei by oocyte cytoplasm. J Cell Biol. 68(3):620-8. 133.朱蔡啟。(1997)鯉魚c-mos基因表現蛋白性狀及功能之探討。國立台灣大學動物學研究所碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75320 | - |
dc.description.abstract | 細胞進行有絲分裂時,染色體必須先複製、濃縮,再經由分離染色體的母機—紡錘體,將之分到兩個子細胞中。進行減數分裂的細胞也必須歷經以上過程,然而由於染色體組態及紡錘體行為的差異,減數分裂必須有所修飾或特化。研究顯示,Nek2和Ran與染色體濃縮皆有直接的關聯,Ran更為紡錘體形成機制的一員,而減數分裂特有蛋白Mos可能透過作用到相關元件,影響減數分裂染色體組態及紡錘體的形成、變動與維持。 細胞分裂時染色體、紡錘體狀態的控制元件彼此之間勢必需要直接的相互作用或間接的溝通,為了探究減數分裂細胞染色體組態變化及紡錘體行為特殊風貌的分子機制,瞭解相關的元件為第一步,因此本實驗自鯉魚的卵巢選殖了Nek2、Ran基因,於細菌表現Nek2重組蛋白,並製作了anti-Nek2抗血清,加上先前實驗室已選殖、表現的Mos基因,希望以此做為建立in vitro研究系統的基礎。由於Mos表現蛋白出現自我聚集的現象,為了探討此現象是否為內生性性狀,本實驗也於細菌表現了失去激?活性及C端truncated突變種Mos蛋白,希望能夠藉此瞭解Mos的性質並獲得有活性的表現蛋白,建立in vitro assay系統,釐清Nek2、Ran及Mos蛋白在減數分裂的相互關係。 | zh_TW |
dc.description.abstract | Chromosome condensation and spindle formation are the principle phenomena of mitosis. Compared with mitosis, meiosis has the particular characters in chromosome configuration and spindle behavior. However, chromosome condensation and spindle formation are still necessary meiotic process. Because of the different between mitosis and meiosis, the meiotic machine must be modified. Nek2 and Ran had be shown to involve in chromosome condensation. Furthermore, Ran participates in spindle formation. On the other hand, Mos knockout data implied that the vertebrate meiosis protein is related to chromosome status and microtubule dynamics. For the sake of completing the separation, cell chromosome condensation components have to coordinate, via either direct interaction or indirect communication. To investigate the characteristic of meiosis molecular mechanism, the cDNA of Nek2 and Ran genes had been cloned from the carp ovary. The carp Nek2 recombinant protein expressed in bacteria was used to produce Nek2 antiserum. Combining with the previous cloned Mos, it will be the basis of in vitro assay system. When expressing Mos recombinant protein, we observed that the recombinant protein tended to aggregation. To inquiry if this is Mos intrinsic characteristic, kinase-dead and C-terminal truncated mos mutant were also expressed in bacteria. In the expect of grasping Mos property, obtaining active expression protein and establishing a in vitro assay system to deliberate the connection between Mos, Nek2 and Ran in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:40Z (GMT). No. of bitstreams: 0 Previous issue date: 2002 | en |
dc.description.tableofcontents | 目錄……………………………………………………i 圖目錄……………………………………………………iii 簡(縮)寫表……………………………………………………iv 中文摘要……………………………………………………vii 英文摘要……………………………………………………viii 引言……………………………………………………1 壹、有絲分裂與減數分裂的分子機制……………………………………………………2 一、染色體濃縮與紡錘體組裝為分裂共同現象……………………………………………………2 1.染色體濃縮……………………………………………………2 2.紡錘體組裝……………………………………………………3 二、減數分裂分子機制必須特化……………………………………………………4 貳、NIMA與染色體濃縮……………………………………………………5 參、Ran為紡錘體形成的重要分子……………………………………………………7 肆、Mos為減數分裂特有的蛋白……………………………………………………8 一、Mos在卵母細胞成熟的角色……………………………………………………9 1.MPF自我放大迴路……………………………………………………9 2.GVBD……………………………………………………10 3.MI/MII transition……………………………………………………11 4.CSF……………………………………………………12 二、Mos的分解……………………………………………………13 三、Mos與染色體濃縮及紡錘體形成的關係……………………………………………………13 伍、Mos活化機制……………………………………………………14 一、激?的活化機制……………………………………………………14 二、Mos的活化……………………………………………………15 陸、實驗目的……………………………………………………16 一、Mos、Nek2、Ran間的交互作用……………………………………………………16 二、表現蛋白的聚集……………………………………………………17 材料與方法……………………………………………………19 壹、基因選殖……………………………………………………19 一、獲取基因片段序列……………………………………………………19 二、以RACE法選殖全長基因……………………………………………………19 貳、蛋白質表現……………………………………………………20 一、質體構築……………………………………………………20 二、蛋白質表現誘發……………………………………………………20 1.一般蛋白質表現……………………………………………………21 2.毒性蛋白表現……………………………………………………21 三、蛋白質萃取……………………………………………………21 四、蛋白質純化……………………………………………………22 1.denature純化……………………………………………………22 2.native純化……………………………………………………22 參、鯉魚卵萃液製備……………………………………………………23 一、超高速離心法……………………………………………………23 二、研磨法……………………………………………………23 肆、Glycerol gradient離心法測定蛋白質分子量……………………………………………………24 伍、蛋白質refolding……………………………………………………24 一、透析法……………………………………………………24 二、快速稀釋法……………………………………………………25 結果……………………………………………………26 壹、鯉魚卵巢Nek2基因……………………………………………………26 一、基因全長序列……………………………………………………26 二、蛋白質表現、純化與抗體製造……………………………………………………26 三、於鯉魚卵萃取液中偵測Nek2蛋白……………………………………………………27 貳、鯉魚卵巢Ran基因……………………………………………………28 參、鯉魚Mos表現蛋白的性狀探討……………………………………………………28 一、分離選殖無激?活性及C端truncated Mos基因……………………………………………………28 二、Anti-Mos抗體製造……………………………………………………28 三、以glycerol gradient離心法測定Mos蛋白複合體分子量……………………………………………………29 四、表現突變種Mos蛋白並與野生型比較溶解度……………………………………………………29 五、鯉魚Mos表現蛋白refolding……………………………………………………30 討論……………………………………………………44 壹、Nek2的調控……………………………………………………44 貳、Ran序列分析……………………………………………………46 參、激?間協調與transport系統……………………………………………………46 肆、Ran系統與transport及MPF活化……………………………………………………48 伍、Nek2和RCC1-Ran共同協調染色體組態……………………………………………………50 陸、核膜破裂前後Ran的角色定位及與Nek2、Mos的作用……………………………………………………51 柒、Mos聚集現象……………………………………………………52 引用文獻……………………………………………………54 | |
dc.language.iso | zh-TW | |
dc.title | 鯉魚減數分裂染色體濃縮相關基因Nek2、Ran之選殖 | zh_TW |
dc.title | Molecular cloning of chromosome condensation related genes, Nek2 and Ran, in the carp oocytes | en |
dc.date.schoolyear | 90-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 65 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。