Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余化龍,胡明哲
dc.contributor.authorKam-Lon Chanen
dc.contributor.author陳錦麟zh_TW
dc.date.accessioned2021-05-19T17:45:45Z-
dc.date.available2021-08-07
dc.date.available2021-05-19T17:45:45Z-
dc.date.copyright2018-08-07
dc.date.issued2018
dc.date.submitted2018-08-03
dc.identifier.citation王志添, & 陳錕山. (2003). 雷達影像多時處理研究. 航測及遙測學刊, 8(1), 47-56.
年佩芬. (2004). 利用合成孔徑雷達差分干涉技術觀測屏東地區地層下陷之研究. (碩士), 臺灣大學.
吳季, 劉浩, 閻敬業, 孫偉英, 張成, & 潘碑. (2009). 干涉式被動微波成像技術. 遙感技術與應用, 24(1), 1-12.
林宜徵. (2011). 應用 MODIS 衛星資料推估地表土壤含水量. 中央大學土木工程學系學位論文, 1-99.
林俐玲, 蔡義誌, & 游韋菁. (2008). 礫石敷蓋與混合對土壤沖蝕影響之研究. 中華水土保持學報, 39(2), 195-206.
邵芸, 廖靜娟, 范湘濤, & 劉浩. (2002). 水稻時域後向散射特性分析: 雷達衛星觀測與模型模擬結果對比. 遥感学报, 6(6), 440-450.
姜壽浩. (2017). 應用 Sentinel-1 合成孔徑雷達影像對舊有崩塌進行再發性評估. 中央大學太空及遙測研究中心.
徐逸祥. (2011). 光學式衛星影像雲層處理之研究. (博士), 國立臺灣大學.
張世駿, 江介倫, 吳進龍, 鄭克聲, & 陳增壽. (2006). 衛星遙測影像應用於地表變遷偵測之研究. 農業工程學報, 52(3), 21-31.
莊麒弘. (2017). 應用 MODIS 衛星資料演算蒸發散比率推估台灣土壤含水量情形. 臺灣大學生物環境系統工程學研究所學位論文, 1-76.
陳俊斌. (2016). 應用Sentinel-1A合成孔徑雷達影像於臺灣中部水稻田之判釋. (碩士論文), 國立中央大學.
陳俊愷, 林伯勳, 蕭震洋, 洪寶發, & 鐘啟榮. (2016). 應用合成孔徑雷達干涉技術評估集水區災害規模及治理成效. 中興工程(133), 35-44.
彭炳勳, 謝依達, & 陳朝圳. (2008). 空載光達雷射穿透率指數與柳杉林葉面積指數之關係探討. 臺灣林業科學, 23(S), s63-s73.
游保杉. (2003). 遙測技術應用於集水區水文之研究 (一).
黃孟涵. (2006). 以合成孔徑雷達干涉法研究台灣之地殼變形. 臺灣大學. Available from Airiti AiritiLibrary database. (2006年)
經濟部水利署. (2016). 中華民國105年臺灣水文年報. 經濟部水利署.
蔡博閎, & 林昭宏. (2016). 衛星影像雲遮蔽區域之移除與填補演算法. Journal of Photogrammetry and Remote Sensing, 20(3), 217-229.
鄭克聲、鄧淑萍、蘇元風、羅漢強、陳永寬. (2010). 福衛二號影像之大氣輻射校正-輻射控制區的應用 農業工程學報, 第56卷(第3期).
盧玉芳. (2006). 以雷達干涉技術監測雲林地層下陷. (畢業論文), 國立交通大學.
羅時凡, 魏浚紘, 李崇誠, & 陳朝圳. (2009). 遙測技術應用於溪頭地區柳杉人工林之森林健康調查.
蘇元風, 候如真, 許淑媚, 蘇明道, 洪維均, 連以婷, & 鄭克聲. (2009). 衛星遙測應用於員山子分洪隧道出口海岸水質監測. 農業工程學報, 55(1), 40-52.
Álvarez-Mozos, Jesús, Casalí, Javier, González-Audícana, María, & Verhoest, Niko EC. (2006). Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 913-924.
Anguela, Thais Paris, Zribi, Mehrez, Baghdadi, Nicolas, & Loumagne, Cécile. (2010). Analysis of local variation of soil surface parameters with TerraSAR-X radar data over bare agricultural fields. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 874-881.
Askne, Jan IH, Dammert, Patrik BG, Ulander, Lars MH, & Smith, Gary. (1997). C-band repeat-pass interferometric SAR observations of the forest. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 25-35.
Attema, EPW, & Ulaby, Fawwaz T. (1978). Vegetation modeled as a water cloud. Radio science, 13(2), 357-364.
Baghdadi, Nicolas, Chaaya, Jad Abou, & Zribi, Mehrez. (2011). Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. IEEE Geoscience and Remote Sensing Letters, 8(1), 14-18.
Baghdadi, Nicolas, Holah, Noha, & Zribi, Mehrez. (2006). Calibration of the integral equation model for SAR data in C‐band and HH and VV polarizations. International Journal of Remote Sensing, 27(4), 805-816.
Barrett, Brian W, Dwyer, Edward, & Whelan, Pádraig. (2009). Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sensing, 1(3), 210-242.
Berk, Alexander, Bernstein, Lawrence S, & Robertson, David C. (1987). MODTRAN: A moderate resolution model for LOWTRAN. Retrieved from
Bindlish, Rajat, & Barros, Ana P. (2001). Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote sensing of environment, 76(1), 130-137.
Boisvert, JB, Gwyn, QHJ, Chanzy, A, Major, DJ, Brisco, B, & Brown, RJ. (1997). Effect of surface soil moisture gradients on modelling radar backscattering from bare fields. International Journal of Remote Sensing, 18(1), 153-170.
Brown, Sarah CM, Quegan, Shaun, Morrison, Keith, Bennett, John C, & Cookmartin, Geoff. (2003). High-resolution measurements of scattering in wheat canopies-Implications for crop parameter retrieval. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1602-1610.
Bryant, Ross, Moran, M Susan, Thoma, DP, Collins, CD Holifield, Skirvin, Susan, Rahman, M, . . . Dugo, MP González. (2007). Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture. IEEE Geoscience and Remote Sensing Letters, 4(1), 137-141.
Chavez Jr, Pat S. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote sensing of environment, 24(3), 459-479.
Delegido, J, Verrelst, J, Meza, CM, Rivera, JP, Alonso, L, & Moreno, J. (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, 46, 42-52.
Delegido, Jesús, Verrelst, Jochem, Alonso, Luis, & Moreno, José. (2011). Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063-7081.
Dobson, Myron C, & Ulaby, Fawwaz T. (1986). Preliminaly Evaluation of the SIR-B Response to Soil Moisture, Surface Roughness, and Crop Canopy Cover. IEEE Transactions on Geoscience and Remote Sensing(4), 517-526.
Dubois, Pascale C, Van Zyl, Jakob, & Engman, Ted. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915-926.
Fung, Adrian K, & Chen, Kun-Shan. (2004). An update on the IEM surface backscattering model. IEEE Geoscience and Remote Sensing Letters, 1(2), 75-77.
Gao, Zhongling, Xu, Xingang, Wang, Jihua, Yang, Hao, Huang, Wenjiang, & Feng, Huihui. (2013). A method of estimating soil moisture based on the linear decomposition of mixture pixels. Mathematical and Computer Modelling, 58(3-4), 606-613.
Glenn, NF, & Carr, JR. (2004). Establishing a relationship between soil moisture and RADARSAT-1 SAR data obtained over the Great Basin, Nevada, USA. Canadian Journal of Remote Sensing, 30(2), 176-181.
Haboudane, Driss, Miller, John R, Tremblay, Nicolas, Zarco-Tejada, Pablo J, & Dextraze, Louise. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment, 81(2-3), 416-426.
Henderson, Floyd M, & Lewis, Anthony J. (1998). Principles and applications of imaging radar. Manual of remote sensing: Volume 2.
Hui, Liu, Mao-hua, Wang, Yue-xuan, Wang, Dao-kun, Ma, & Hai-xia, Li. (2008). Development of farmland soil moisture and temperature monitoring system based on wireless sensor network [J]. Journal of Jilin University (Engineering and Technology Edition), 3, 604-608.
Iisaka, J. (1998). Synthetic aperture radar image handbook. Asakura, Tokyo, 164-165.
Jacquemoud, S, & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote sensing of environment, 34(2), 75-91.
Jacquemoud, Stéphane, Verhoef, Wout, Baret, Frédéric, Bacour, Cédric, Zarco-Tejada, Pablo J, Asner, Gregory P, . . . Ustin, Susan L. (2009). PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote sensing of environment, 113, S56-S66.
Joseph, AT, van der Velde, Rogier, O'neill, PE, Lang, R, & Gish, T. (2010). Effects of corn on C-and L-band radar backscatter: A correction method for soil moisture retrieval. Remote sensing of environment, 114(11), 2417-2430.
Kaufman, Yoram J, & Sendra, Claudia. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381.
Kornelsen, Kurt C, & Coulibaly, Paulin. (2013). Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. Journal of Hydrology, 476, 460-489.
Le Toan, Thuy, Ribbes, Florence, Wang, Li-Fang, Floury, Nicolas, Ding, Kung-Hau, Kong, Jin Au, . . . Kurosu, Takashi. (1997). Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing, 35(1), 41-56.
Lee, Jong-Sen. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer graphics and image processing, 17(1), 24-32.
Lievens, Hans, & Verhoest, Niko EC. (2011). On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling, the IEM, and effective roughness parameters. IEEE Geoscience and Remote Sensing Letters, 8(4), 740-744.
Lopes, Armand, Nezry, E, Touzi, R, & Laur, H. (1993). Structure detection and statistical adaptive speckle filtering in SAR images. International Journal of Remote Sensing, 14(9), 1735-1758.
Massonnet, Didier, & Feigl, Kurt L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of geophysics, 36(4), 441-500.
Mayer, Bernhard, & Kylling, Arve. (2005). The libRadtran software package for radiative transfer calculations-description and examples of use. Atmospheric Chemistry and Physics, 5(7), 1855-1877.
Merzouki, Amine, McNairn, Heather, & Pacheco, Anna. (2011). Mapping soil moisture using RADARSAT-2 data and local autocorrelation statistics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 128-137.
Notarnicola, Claudia, Angiulli, Mariella, & Posa, Francesco. (2006). Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Transactions on Geoscience and Remote Sensing, 44(4), 925-935.
Oh, Yisok, Sarabandi, Kamal, & Ulaby, Fawwaz T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370-381.
Paloscia, S, Pettinato, S, Santi, E, Notarnicola, C, Pasolli, L, & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote sensing of environment, 134, 234-248.
Patel, Parul, Srivastava, Hari Shanker, Panigrahy, Sushma, & Parihar, Jai Singh. (2006). Comparative evaluation of the sensitivity of multi‐polarized multi‐frequency SAR backscatter to plant density. International Journal of Remote Sensing, 27(2), 293-305.
Pierdicca, Nazzareno, Castracane, Paolo, & Pulvirenti, Luca. (2008). Inversion of electromagnetic models for bare soil parameter estimation from multifrequency polarimetric SAR data. Sensors, 8(12), 8181-8200.
Quarmby, NA, Milnes, Mi, Hindle, TL, & Silleos, N. (1993). The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. International Journal of Remote Sensing, 14(2), 199-210.
Quesney, A, Le Hégarat-Mascle, S, Taconet, Odile, Vidal-Madjar, D, Wigneron, JP, Loumagne, C, & Normand, M. (2000). Estimation of watershed soil moisture index from ERS/SAR data. Remote sensing of environment, 72(3), 290-303.
Rahimzadeh-Bajgiran, Parinaz, Berg, Aaron A, Champagne, Catherine, & Omasa, Kenji. (2013). Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS journal of photogrammetry and remote sensing, 83, 94-103.
Richter, Rudolf, & Schläpfer, D. (2005). Atmospheric/topographic correction for satellite imagery. DLR report DLR-IB, 565-501.
Romshoo, Shakil Ahmad, Koike, Masahiro, Onaka, Sadayukihir, Oki, Taikan, & Musiake, Katumi. (2002). Influence of surface and vegetation characteristics on C-band radar measurements for soil moisture content. Journal of the Indian Society of Remote Sensing, 30(4), 229.
Sandholt, Inge, Rasmussen, Kjeld, & Andersen, Jens. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote sensing of environment, 79(2-3), 213-224.
Satalino, Giuseppe, Balenzano, Anna, Mattia, Francesco, & Davidson, Malcolm. (2012). Sentinel-1 SAR data for mapping agricultural crops not dominated by volume scattering. Paper presented at the Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International.
Schläpfer, Daniel, Borel, Christoph C, Keller, Johannes, & Itten, Klaus I. (1998). Atmospheric precorrected differential absorption technique to retrieve columnar water vapor. Remote sensing of environment, 65(3), 353-366.
Skolnik, Merrill I. (1962). Introduction to radar. Radar Handbook, 2.
Ulaby, Fawwaz T, Moore, Richard K, & Fung, Adrian K. (1982). Microwave remote sensing: active and passive. Vol. 2, Radar remote sensing and surface scattering and emission theory: Addison-Wesley Reading, MA.
Ulaby, FT, Allen, CT, Eger Iii, G, & Kanemasu, E. (1984). Relating the microwave backscattering coefficient to leaf area index. Remote sensing of environment, 14(1-3), 113-133.
Verhoef, Wouter. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote sensing of environment, 16(2), 125-141.
Vermote, Eric F, Tanré, Didier, Deuze, Jean L, Herman, Maurice, & Morcette, J-J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3), 675-686.
Wagner, Wolfgang, Lemoine, Guido, & Rott, Helmut. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote sensing of environment, 70(2), 191-207.
Wang, Quan, Adiku, Samuel, Tenhunen, John, & Granier, André. (2005). On the relationship of NDVI with leaf area index in a deciduous forest site. Remote sensing of environment, 94(2), 244-255.
Watson, D Jh. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of botany, 11(41), 41-76.
Wigneron, J-P, Calvet, J-C, Pellarin, T, Van de Griend, AA, Berger, M, & Ferrazzoli, P. (2003). Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Remote sensing of environment, 85(4), 489-506.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7531-
dc.description.abstract土壤含水量為一在氣象學、水文學、農業生態學等的重要參數,同時也影響全球水循環、植物蒸發散情形等機制運作。在農業中土壤含水量影響著農業配水的分配;在坡地災害中也作為土石流預警的一項重要參考指標。然而土壤含水量的量測常常受到量測儀器的時空間局限性,要浪費大量的人力物力才能取得大範圍及長時間的監測資訊。但若能使用衛星遙測技術的優點來進行土壤含水量的推估,將可取得大範面長時間的監測資訊,這必然會對自然環境有更進一步的了解。
本文將應用歐洲太空總署ESA的哥白尼計畫-Sentinel系列任務之開放衛星資料—Sentinel-1合成孔徑雷達微波波段資料及Sentinel-2多光譜資料來進行土壤含水量的推估。合成孔徑雷達的成像資訊為後向散射係數,而後向散射係散與土壤含水量有直接的關係。因此本文以兩者關係的觀點角度切入,探討台灣地區兩者之間的關係,並以水雲模型來消除植被覆蓋所造成的影響。水雲模型的參數中,葉面積指數及植被含水量無法直接從Sentinel-1影像獲取,需要以Sentinel-2的影像反射率,配合PROSAIL模型反演得出葉面積指數及植被含水量。
本文將以2017年全年的Sentinel-1及Sentinel-2資料,並與中央大學測站的土壤含水量進行比較,進而觀察後向散射係數與不同深度土壤含水量之相關性。結果顯示雷達後向散射係數與中央大學水文氣象測站的深度10公分的土壤含水量有比較好的相關性,相關係數R-square為0.53,並把回歸公式套用到桃園及石門灌區,觀察該區土壤含水量的時間變化,並以石門灌區內的皮寮溪為例作討論。
zh_TW
dc.description.abstractSoil moisture is one of the important parameters in meteorology, hydrology as well as agricultural, which also affect the operation of the mechanism such as global water cycle and plant evapotranspiration. Soil moisture is one of the factor which affect landslide as well as agriculture. However, the measurement of soil moisture is often limited by the spatial limitations of the observation instrument. If remote sensing data can be used to estimate soil moisture, it can have a large area and time series monitoring of soil moisture and that can increase the efficiency of environmental management and monitoring.
This paper will use the Sentinel-1 C band SAR & Sentinel-2 multi-spectrum satellite data which come from Copernicus Programme of ESA (European Space Agency) to estimate soil moisture. The imaging principle of SAR is backscatter, which is directly related to soil moisture. Therefore, this paper will use the point of view of their relationship to estimate their situation in Taiwan region. Water-cloud model is used to reduce the vegetation cover affect. In water-cloud model, there are two parameters: LAI and canopy water content cannot be obtained directly from Sentinel-1 satellite. That’s why Sentinel-2 satellite reflectance data are used to do inverse calculation of LAI and canopy water content using PROSAIL.
In this paper, Sentinel-1 & Sentinel-2 satellite data for the whole year 2017 are used and compare with the in situ soil moisture data which come from surface hydrology laboratory in National Central University, as to observe their relationship. Results show that C band radar backscatter coefficient the depth of 10cm soil moisture have a good correlation, the correlation coefficient R-square is 0.53. Therefore, apply their relationship to Taoyuan & Shihmen irrigation area, observe the time series change in 2017 of the area, and use Piliao river as a case study for discussion.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:45:45Z (GMT). No. of bitstreams: 1
ntu-107-R05622033-1.pdf: 40667699 bytes, checksum: 47feca52fe90822afca6745078dba842 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 文獻回顧 3
2.1 被動式光學雷達推估土壤含水量 3
2.2 主動式微波雷達 4
2.2.1 合成孔徑雷達原理 5
2.2.2 影響合成孔徑雷達成像之因素 6
2.2.3 主動式合成孔徑雷達推估土壤含水量 7
2.3 被動式微波雷達 10
2.4 葉面積指數(Leaf Area Index, LAI) 10
第三章 研究區域及材料 12
3.1 研究區域 12
3.2 衛星遙測資料 – Sentinel-1 13
3.2.1 Sentinel-1產品介紹 13
3.2.2 Sentinel-1衛星影像擷取 14
3.2.3 Sentinel-1衛星資料處理 15
3.3 衛星遙測資料 – Sentinel-2 17
3.3.1 Sentinel-2產品介紹 17
3.3.2 Sentinel-2衛星影像擷取 18
3.3.3 Sentinel-2衛星資料處理 19
3.3.4 雲遮蔽的影響 21
3.4 中央大學水文氣象測站土壤含水量資料 22
第四章 研究方法及流程 24
4.1 研究流程 24
4.2 Water-Cloud Model水雲模型 24
4.3 PROSAIL輻射傳輸模型 26
第五章 結果與討論 29
5.1 中央大學水文氣象測站土壤含水量資料與後向散射係數作比較 29
5.2 桃園石門灌區 31
5.3 討論 39
第六章 結論及建議 51
第七章 參考文獻 53
dc.language.isozh-TW
dc.title利用Sentinel-1 & 2遙測影像推估土壤含水量空間分佈-以桃園石門灌區為例zh_TW
dc.titleUsing Sentinel-1 & 2 data to estimate spatial distribution of soil moisture – A case study of Taoyuan and Shimen Irrigation areaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳主惠,黃倬英
dc.subject.keyword土壤含水量,合成孔徑雷達,衛星遙測,水雲模型,PROSAIL輻射傳輸模型,zh_TW
dc.subject.keywordsoil moisture,synthetic aperture radar,remote sensing,water-cloud model,PROSAIL,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201802444
dc.rights.note同意授權(全球公開)
dc.date.accepted2018-08-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf39.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved