Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.authorShu-Chen Shenen
dc.contributor.author沈書甄zh_TW
dc.date.accessioned2021-07-01T08:12:38Z-
dc.date.available2021-07-01T08:12:38Z-
dc.date.issued2002
dc.identifier.citation卓娟秀。1998。五種林木種子對乾燥的敏感性與微細構造。國立台灣大學植物科學研究所碩士論文。
邱寶玲。1971。低溫及Gibberellin處理打破流蘇上胚軸休眠的試驗。國立台灣大學園藝系學士論文。
胡適宜。1990。被子植物胚胎學。初版。曉園出版社,臺北市。p. 77-90。
許圳塗、馬溯軒、蔡幸鈴、李阿嬌。1999。流蘇胚發育期胚芽與胚根之不同步休眠。植物種苗1 : 19-34。
郭華仁。種子研究室全球資訊網。http://seed.agron.ntu.edu.tw。
郭華仁、朱鈞。1979。種子休眠的機制——磷酸五碳醣路線假設。科學農業27 : 71-77。
陳家全、李家維、楊瑞森。1991。生物電子顯微鏡學。國科會精密儀器中心,新竹市。
黃增泉。1996。植物分類學:台灣維管束植物科誌。二版。南天書局有限公司,臺北市。p. 25。
蔡幸鈴、李阿嬌、馬溯軒、許圳塗。1992。流蘇未成熟胚培養及上胚軸休眠之克服。科學農業40 (7, 8) : 331-332。
蔡淑華。2000。植物組織切片技術綱要。茂昌圖書有限公司,臺北市。
Albert, S., M. Delseny and M. Devic. 1997. BANYULS, a noval negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal 11(2): 289-299.
Baskin, J. M. and C. C. Baskin. 1985(a). Seed germination ecophysiology of the woodland spring geophyte Erythronium albidum. Botanical Gazette 146(1): 130-136.
Baskin, J. M. and C. C. Baskin. 1985(b). Germination ecophysiology of Hydrophyllum appendiculatum, a mesic forest biennial. American Journal of Botany 72(2): 185-190.
Baskin, J. M. and C. C. Baskin. 1985(c). Epicotyl dormancy in seed of Cimicifuga racemosa and Hepatica acutiloba. Bulletin of the Torrey Botanical Club 112(3): 253-257.
Baskin, J. M. and C. C. Baskin. 1986. Seed germination ecophysiology of the woodland herb Asarum candadense. The American Midland Naturalist 116(1): 132-139.
Baskin, J. M. and C. C. Baskin. 1989. Seed germination ecophysiology of Jeffersonia diphylla, a perennial herb of mesic deciduous forests. American Journal of Botany 76(7): 1073-1080.
Baskin, J. M. and C. C. Baskin. 1991.Nondeep complex morphophysiological dormancy in seeds of Osmorhiza claytonii (Apiaceae). American Journal of Botany 76(7): 1073-1080.
Berry, T. A., and J. D. Bewley. 1992. A role for the surrounding fruit tissues in preventing germination of tomato (Lycopersicon esculentum) seeds. A consideration of the osmotic environment and abscisic acid. Plant Physiology 100: 951-957.
Bewley, J. D. 1997. Seed germination and dormancy. The Plant Cell 9: 1055-1066.
Bewley, J. D. and M. Black. 1994. Seeds: physiology of development and germination. 2nd ed. Plenum Press, New York.
Bollard, E. G. 1970. The physiology and nutrition of developing fruits. In: A. C. Hulme ed. The biochemistry of fruits and their products. vol. 1. Academic press, London. p: 387-425. (cited in: Li., X. J., J. M. Baskin and C. C. Baskin. 1999.)
Bowman, J. 1994. Arabidopsis. An atlas of morphology and development. Springer-Verlag, New York. p. 353.
Bozzola, J. J. and L. D. Russell. 1999. Electron Microscopy principles and Techniques for Biologists. 2nd ed. Jones and Bartlett Publishers, Massachusetts.
Buttrose, M. S. and J. N. A. Lott. 1978. Calcium oxalate druse crystals and other inclusions in seed protein bodies: Eucalyptus and jojoba. Canadian Journal of Botany 56: 2083-2091.
Butuzova, O. G., G. E. Titova and L. M. Pozdova. 1997. Peculiarities of seed development completed beyond maternal plant (the phenomenon of underdeveloped embryo). Bulletin of the Polish Academy of Sciences Biological Sciences 45(2-4): 267-275.
Chan, C. R. and R. D. Marquard. 1999. Accelerated propagation of Chionanthus virginicus via embryo culture. Hortscience 34(1): 140-141.
Chien, C. T., L. L. Kuo-Huang, T. P. Lin. 1998. Changes in ultrastructure and abscisic acid level, and response to applied gibberellins in Taxus mairei seeds treated with warm and cold stratification. Annals of Botany 81: 41-47.
Debeaujon, I., K. M. L?on-Kloosterziel and M. Koornneef. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122: 403-413.
Dulson, J., J. D. Bewley and R. N. Johnston. 1988. Abscisic acid is an endogenous inhibitor in the regulation of mannanase production by isolated lettuce (Lactuca sativa cv Grand Rapids) endosperms. Plant Physiology 87: 660-666.
Finkelstein, R. R. and C. R. Somerville. 1990. Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiology 94: 1172-1179
Gahan, P. B. 1984. Plant histochemistry and cytochemistry: an introduction. Queen Elizabeth, London.
Gill, J. D. and F. L. Pogge. 1974. Chionanthus virginicus L. In: Seed of woody plants in United States. Forest Service, U. S. Department of Agriculture, Washington, D. C. p: 323-325.
Gill, J. D. and F. L. Pogge. 1974. Viburnum L. In: Seed of woody plants in United States. Forest Service, U. S. Department of Agriculture. Washington, D. C. p: 844-850.
Graber, J. W. and P. M. Powers. 1981. Dwarf sumc as winter bird food. The American Midland Naturalist 105: 410-412.
Hartmann, H. T., D. E. Kester, F. T. Davies, Jr. and R. L. Geneve. 1997. Plant propagation: principles and practices. 6th ed. Prentice Hall, London. p: 125-146, 177-215.
Herrera, C. M. 1982. Defense of ripe fruit from pest: its significance in relation to plant-disperser interactions. The American Naturalist 120: 218-241.
Hilhorst, H. W. M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5: 61-73.
Hilhorst, H. W. M. and B. Downie. 1994. Dormancy and germination of abscisic acid -deficient tomato seeds. Futher studies with the sitiens mutant. Plant Physiology (supplement) 105: 167.
Hole, D. J., J. D. Smith and B. G. Cobb. 1989. Regulation of embryo dormancy by manipulation of abscisic acid in kernels and associated cob tissue of Zea mays L. cultured in vitro. Plant Physiology 91:101-105.
International Seed Testing Association. 1993. International rules for testing. Seed Science and technology 21: 43-46.
Jing, X. M. and G. H. Zheng. 1999. The characteristics in seed germination and dormancy of four wild species of tree peonies and their bearing on endangerment. Acta Phytophysiologica Sinica 25(3): 214-221.
Jones, E, and N. T. Wheelwright. 1987. Seasonal changes in the fruits of Viburnum opulus, a fleshy-fruited temperate-zone shrub. Canadian Journal of Botany 65: 2291-2296.
Kantar, F., C. J. Pilbeam and P. D. Hebblethwaite. 1996. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Annals of Applied Biology 128: 85-93.
Karssen, C. M., D. L. C. Brinkhorst-van der Swan, A. E. Breekland and M. Koornneef. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid-deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157: 157-165.
Khan, M., P. B. Cavers, M. Kane, K. Thompson. 1996. Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Science Research 7: 21-25.
Kiyotsugu, Y. and S. Mitsuo. 1993. Quantitative description of the process of architecture formation in Viburnum dilatatum and V. wrightii (Caprifoliaceae). Journal of plant Research 106(1084): 289-296.
Kostman, T. A. and V. R. Franceschi. 2000. Cell and calcium oxalate crystal growth is coordinated to achieve high capacity calcium regulation in plants. Protoplasma 214: 166-179.
Krannitz, P. G., and M. A. Maun. 1990. An experimental study of floral display size and reproductive success in Viburnum opulus: importance of grouping. Canadian Journal of Botany 69: 394-399.
Kuo-Huang, L. L. 1990. Calcium oxalate crystals in the leaves of Nelumbo nucifera and Nymphaea tetragona. Taiwania 35(3): 178-190.
Kyle D. J. and E. D. Styles. 1977. Development of Aleurone and sub-aleurone layers in maize. Planta 137: 185-193.
Landry, L. G., C. C. S. Chapple and R. L. Last. 1995. Arabidopsis mutant lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiology 109: 1159-1166.
Le Page-Degivry, M. T. and G. Garello. 1992. In situ abscisic acid synthesis. A requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiology 98:1386-1390.
L?on-Kloosterziel, K. M., C. J. Keijzer and M. Koornneef. 1994. A seed shape mutant of Arabidopsis that is affected in integument development. The Plant Cell 6: 385-392.
L?on-Kloosterziel, K. M., G. A. van de Bunt, J. A. D. Zeevaart and M. Koornneef. 1996. Arabidopsis mutants with a reduced seed dormany. Plant Physiology 110: 233-240.
Li., X. J., J. M. Baskin and C. C. Baskin. 1999. Comparative morphology and physiology of fruit and seed development in the two shrubs Rhus aromatica and R. glabra (Anacardiaceae). American Journal of Botany 86(9): 1217-1225.
Lott, J. N. A. 1980. Protein bodies. In: N. E. Tolbert ed. Biochemistry of plants: A comprehensive treatise. Vol. 1. Academic Press, New York.
Lott, J. N. A. and M. S. Buttrose. 1978. Location of reserves of mineral elements in seed protein bodies: macadamia nut, walnut, and hazel nut. Canadian Journal of Botany 56: 2072-2082.
Martin, A. C. 1946. The comparative internal morphology of seeds. The American Midland Naturalist 36(3): 513-660.
Mauseth, J. D. 1988. Plant Anatomy. The Benjamin/Cummings Publishing Company. Menlo Park, California. p. 440.
Nautiyal, P. C., V. Ravindra and J. B. Misra. 1997. Response of dormant and non-dormant seeds of groundnut (Arachis hypogaea) genotypes to accelerated ageing. Indian Journal of Agricultural Sciences 67(2): 67-70.
Nikolaevva, M. G. 1977. Factors controlling the seed dormancy pattern. In: A. A. Khan, ed. The physiology and biochemistry of seed dormancy and germination. North-Holland Publishing Company, New York.. p. 51-76.
Ooms, J. J. J., K. M. L?on-Kloosterziel, D. Bartels, M. Koornneef and C. M. Karssen. 1993. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. Plant Physiology 102: 1185-1191.
Pinfield, N. J., and V. E. E. Gwarazimba. 1992. Seed dormancy in Acer: The role of abscisic acid in the regulation of seed development in Acer platanoides L. Plant Growth Regulation 11: 293-299.
Pukittayacamee, P. and A. K. Hellum. 1987. Seed germination in Acacia auriculiformis: developmental aspects. Canadian Journal of Botany 66: 388-393.
Robert, E. F. 1977. Epicotyl dormancy in white and chestnut oaks. Forest Science 23(3): 329-332.
Spitzer, E. and J. N. A. Lott. 1982. Protein bodies in umbelliferous seeds: I. Structure. Canadian Journal of Botany 60: 1381-1391.
Stiles, E. W. 1980. Pattern of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. The American Naturalist 166: 670-688.
Suzuki, T., T. Matsuura, N. Kawakami, K. Noda. 2000. Accumulation and leakage of abscisic acid during embryo development and seed dormancy in wheat. Plant Growth Regulation 30: 253-260.
Titus, G. R. 1940. So-called 2-year seeds germinated first year. American Nurseryman 72: 22.
Webb, A. and H. J. Arnott. 1983. Inside plant crystals: A study of the noncrystalline core in druses of Vitis vinifera endosperm. Scanning Electron Microscopy 1983/IV: 1759-1770.
Weidner, S., R. Amarowicz, M. Karamac and G. Dabrowski. 1999. Phenolic acids in caryopses of two cultivars of wheat, rye and triticale that display different resistance to pre-harvest sprouting. European Food Research Technology 210: 109-113.
Xu, N. and J. D. Bewley. 1991. Sensitivity to abscisic acid and osmoticum changes during embryogenesis of alfalfa (Medicago sativa). Journal of Experimental Botany 42: 821-826.
Yang, K. C. and S. T. Chiu. 1998. Caprifoliaceae. In: editorial committee of the flora of Taiwan, ed. Flora of Taiwan. 2nd ed. Vol. 4. Department of Botany, National Taiwn university, Taipei. p. 738, 751-752, 755-756.
Yang, Y. P. and S. Y. Lu. 1998. Oleaceae. In: editorial committee of the flora of Taiwan, ed. Flora of Taiwan. 2nd ed. Vol. 4. Department of Botany, National Taiwn university, Taipei. p. 128-129, 131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75315-
dc.description.abstract流蘇(Chionanthus retusus Lindl. & Paxt)與呂宋莢迷(Viburnum luzonicum Rolfe)皆為具園藝觀賞價值的台灣原生樹種。前人研究顯示兩者之種子可能具上胚軸休眠性質,造成以種子育苗繁殖上的困難。本論文首先檢測兩者之發芽模式,結果顯示流蘇種子之胚芽與胚根呈現不同步萌發現象,然而當胚根突出種殼後,胚芽並非處於休眠靜止狀態,而已呈緩慢生長;呂宋莢迷則不具不同步萌發現象,而是存在胚芽與胚根同步萌發的深度形態性休眠。為進一步瞭解此兩種具不同休眠模式之種子,其發育過程與種子休眠的相關性,本論文乃比較其胚胎發育過程的異同,並探討種殼(包括內果皮、種皮與胚乳)的發育對其種子發芽的影響。
流蘇與呂宋莢迷果實的各部位生長曲線類似,在長度方面均呈單S形生長曲線,果徑則呈雙S形曲線。流蘇由開花至果熟脫落約需時19週,而呂宋莢迷則約36週方落果,屬於宿存型果實。兩者果實的發育過程依胚的發育程度均可區分為形態分化期、胚體增大期及生理成熟期三階段,流蘇各階段需時約12、5及2週,呂宋莢迷則為16、12及8週。
就內果皮與種皮的發育而言,兩者在胚珠發育早期均具珠被絨氈層。流蘇內果皮自授粉後一週開始漸特化為厚壁組織,至增大期的中期方特化完成;種皮的中層薄壁組織在增大期中期逐漸被壓擠但未完全瓦解。而呂宋莢迷內果皮特化較晚,自授粉後約七週方開始,但至形態分化期末期即已特化完成;而其種皮則自形態分化期中期,最外層表皮細胞開始特化為巨大且富含單寧的細胞,中層薄壁組織則逐漸瓦解,而至形態分化期末期種皮特化完成後即沒有進一步的變化。流蘇與呂宋莢迷內果皮與種皮在成熟後均具透水性,並未造成物理性的種殼休眠機制。
流蘇與呂宋莢迷胚乳的發育皆為細胞型胚乳,發育初期胚乳細胞的細胞壁薄且液胞大,而後其細胞質內逐漸累積儲存性油質體與蛋白質體,醣類則以半纖維素累積於細胞壁,可能造成發芽時的機械性阻力。流蘇自增大期才漸由胚乳外層向內層細胞累積油質體與蛋白質體,而加厚的細胞壁則出現於增大期末期;然而,呂宋莢迷則自形態分化期末期即開始增厚細胞壁,增大期中期油質體與蛋白質體大量累積,且蛋白質體內尚有晶簇狀結晶發育,此為胚乳細胞中較特有的現象。
就胚胎的發育而言,流蘇與呂宋莢迷均經歷原胚、球形胚、心形胚與魚雷形胚的形態分化過程,再經增大期至生理成熟期。流蘇成熟胚為匙形胚型,具明顯分化完整的胚根構造,但並不具圓頂狀胚芽頂端分生組織與上胚軸構造,因此推論胚芽頂端分生組織形態分化未全,可能是造成其胚根與胚芽不同步休眠之原因。呂宋莢迷成熟胚為線形胚型,胚體微小,且懸柄仍明顯可見,而胚根內維管束組織分化並不明顯,胚芽頂端分生組織亦未分化,由此推論其胚體未發育完全,而造成種子具深度的形態性休眠。
比較流蘇胚根與胚芽頂端分生組織之發育過程中微細構造的變化,兩者在形態分化期及胚體增大期並無明顯差異,然而至成熟期,胚芽頂端分生組織細胞內具較多的油質體,且自增大期中期即不見分裂中的細胞,然而胚根分生組織則於成熟期尚可見分裂細胞,顯示胚根較晚呈現休眠狀態;然而呂宋莢迷的胚根與胚芽就儲存物的累積、細胞分裂的停止而言,幾乎是呈同步的。與流蘇相較,呂宋莢迷在增大期中期已有儲存物累積,成熟期細胞質幾乎完全為油質體與蛋白質體佔滿,而呈現休眠狀態,因而由此推論,相較於非或淺休眠性的種子,在較深度形態性休眠種子中,其發育未全的胚胎頂端分生組織的細胞內,會較早進行儲存物的累積,且會累積較多。
zh_TW
dc.description.abstractIn Taiwan, both Chionanthus retusus Lindl. & Paxt and Viburnum luzonicum Rolfe are local trees with ornamental value in horticulture. The previous studies reported that the mature seeds of some species of these two genera maybe with epicotyl dormancy and making the seed propagations with difficulty. In this thesis, the germination mode of these two kinds of seeds were previously studied. The results showed that the seeds of C. retusus are with epicotyl dormancy, i.e. unsynchronized dormancy of plumule and radicle. However, the shoot apical meristem began to differentiate when the radicle extruded from the seed coat. The seeds of V.luzonicum showed synchronized deep morphological dormancy of the plumule and radicle. In order to understand the structural differences between these two kinds of seed dormancy, the development of their fruits and seeds were investigated. Besides, the effects of seed coat on the seed dormancy were also studied.
The growth curves of fruits and seeds of C.retusus and V.luzonicum were similar and showed a single-sigmoidal curve in length and double-sigmoidal curve in width. The process of fruit development were divided into three stages: histodifferentiation, cell expansion, and maturation drying stage. The duration from the flowering to fruit ripening was 19 weeks for C. retusus and 36 weeks for V. luzonicum, i.e. for each stage 12,5, and 2 weeks in C. retusus and 16, 12, and 8 weeks in V. luzonicum.
In C. retusus, stone cells of the endocarp to formed in the first week after pollination (WAP) and ended the tissue sclerification in the middle cell expansion stage. After then the mesophyll of testa were compressed but never completely disintegrated. While in V. luzonicum, the endocarp sclerification began in the 7th WAP and ended at the later histodifferentiation stage. The outer epidermis of the testa of V. luzonicum was composed of big tannin cells and the mesophyll was compressed and disintegrated at the middle histodifferentiation stage. The endocarp and testa of both species were water permeable and without physical dormancy mechanism.
The pattern of endosperm development in C. retusus and V. luzonicum are cellular type. At early stage, the cell wall was very thin with a big vacuole. During the development of endosperm, oil and protein bodies accumulated in the cytoplasm and storage carbohydrates formed in the cell wall. The accumulation of food reserves started earlier in V. luzonicum than in C. retusus. It is interesting to note that in V. luzonicum lots of druse crystals were found in the protein bodies.
The processes of embryo development in both species were composed of proembryo, globular, heart, torpedo, elongation and mature stages. The type of embryo in C. retusus was spatulate and with well-differentiated radicle, while the structure of dome-shaped shoot apical meristem and the epicotyl were not found, and thus the unsynchronized dormancy of seed caused. The mature embryo of V. luzonicum was linear type and small in size without well-developed radicle and epicotyl. Till the maturation of seed, the suspensor was still exist. The under-developed embryo might cause the deep morphological dormancy of seed.
Comparing the ultrastructure of shoot and root apical meristem of embryo of C. retusus at the histodifferentiation and cell expansion stage, there were no obvious differences. While at maturation, more oil bodies were observed in the shoot apical meristem than in root apical meristem. Besides, dividing cell were still observed at maturation stage of the root apical meristem but not in shoot apical meristem. These phenomenon could related to unsynchronized dormancy of shoot apical meristem and root apical meristem in C. retusus. Nevertheless, the food reserves started to accumulate in V. luzonicum at the middle cell expansion stage. At the seed maturation, the oil and protein bodies almost occupied the cytoplasm and showing deep embryo dormant state. It was hypothesized that the accumulation of food reserves during the seed development started earlier and accumulated more in the under-development apical meristem cell in the deep morphological dormancy seed than in the non or non-deep dormant seeds.
en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:38Z (GMT). No. of bitstreams: 0
Previous issue date: 2002
en
dc.description.tableofcontents目錄……………………………………………………Ⅰ
附圖目錄……………………………………………………Ⅱ
附表目錄……………………………………………………Ⅱ
圖版目錄……………………………………………………Ⅲ
中文摘要……………………………………………………Ⅳ
英文摘要……………………………………………………Ⅵ
壹、前言……………………………………………………1
貳、材料與方法……………………………………………………8
一、材料的採集……………………………………………………8
二、成熟種子發芽模式的檢測……………………………………………………8
三、果實各部位生長曲線的測量……………………………………………………9
四、發育中果實外形、解剖及微細構造的觀察與計量……………………………………………………10
五、儲存物質組織化學檢定……………………………………………………12
六、呂宋莢迷胚乳結晶酸蝕法測試……………………………………………………13
七、內果皮與種皮透水性測定……………………………………………………13
參、結果……………………………………………………15
一、成熟種子發芽模式……………………………………………………15
二、果實與種子之生長曲線型式……………………………………………………16
三、果實發育……………………………………………………19
圖版說明……………………………………………………37
肆、討論……………………………………………………100
一、發芽模式的探討……………………………………………………100
二、果實與種子之生長曲線型式的探討……………………………………………………103
三、子房構造的比較……………………………………………………104
四、內果皮與種皮發育的比較……………………………………………………104
五、胚乳發育的比較……………………………………………………107
六、胚發育的比較……………………………………………………111
伍、引用文獻……………………………………………………115
dc.language.isozh-TW
dc.title流蘇與呂宋莢迷之種子休眠與其果實與種子發育過程中形態形成之研究zh_TW
dc.titleSeed dormancy and morphogenesis of fruit and seed development in Chionanthus retusus Lindl. & Paxt and Viburnum luzonicum Rolfe.en
dc.date.schoolyear90-2
dc.description.degree碩士
dc.relation.page120
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved