請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75286
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Ting-Wen Cheng | en |
dc.contributor.author | 鄭婷文 | zh_TW |
dc.date.accessioned | 2021-07-01T08:12:31Z | - |
dc.date.available | 2021-07-01T08:12:31Z | - |
dc.date.issued | 2002 | |
dc.identifier.citation | Albert, M. L., Kim, J. I., and Birge, R. B. (2000). alphavbeta5 integrin recruits the Crkll-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2, 899-905.
Arber, S., Barbayannis, F. A., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O., and Caroni, P. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393, 805-9. Awasaki, T., Saito, M., Sone, M., Suzuki, E., Sakai, R., Ito, K., and Hama, C. (2000). The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 26, 119-131. Bai C and Elledge S. J. (1997). Gene identification using the yeast two-hybrid system. Methods Enzymol. 273, 331-347. Bateman, J., Shu, H., and Van Vactor, D. (2000). The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron 26, 93-106. Bellanger, J. M., Astier, C., Sardet, C., Ohta, Y., Stossel, T. P., and Debant, A. (2000). The Rac1- and RhoG-specific GEE domain of Trio targets filamin to remodel cytoskeletal actin. Nat Cell Blot 2, 888-92. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. Burbelo, P. D., Miyamoto, S., Utani, A., Brill, S., Yamada, K. M., Hall, A., and Yamada, Y. (1995). P190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking. J Biol Chem 270, 30919-26. Debant, A., Serra-Pages, C., Seipel, K., O’Brien, S., Tang, M., Park, S. H., and Streuli, M. (1996). The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. U S A. 93, 5466-5471. D’Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, R D., and Van Aelst, L. (1997). A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445-5454. Eastman, C., Horvitz, H. R., and Jin, Y. (1999). Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J Neurosci 19, 6225-34. Edwards, D. C., Sanders, L. C., Bokoch, G. M., and Gill, G. N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1, 253-9. Ellis, R. E., Jacobson, D. M., and Horvitz, H. R. (1991). Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79-94. Erickson, M. R., Galletta, B. J., and Abmayr, S. M. (1997). Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol 138, 589-603. Garrity, P. A., Rao, Y., Salecker, I., McGlade, J., Pawson, T., and Zipursky, S. L. (1996). Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 85, 639-50. Gumienny, T. L., Brugnera, E., Tosello-Trampont, A. C., Kinchen, J. M., Haney, L. B., Nishiwaki, K., Walk, S. F., Nemergut, M. E., Macara, I. G., Francis, R., Schedl, T., Qin, Y., Van Aelst, L., Hengartner, M. O., and Ravichandran, K. S. (2001). CED-12/ELMO, a novel member of the Crkll/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815-826 Hasegawa, H., Kiyokawa, E., Tanaka, S., Nagashima, K., Gotoh, N., Shibuya, M., Kurata, T., and Matsuda, M. (1996). DOCKI80, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol 16, 1770-6. Hedgecock, E. M., Sulston, J. E., and Thomson, J. N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277-9. Herman, R. K. and Hedgecock, E. M. (1990). Limitation of the size of the bulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis. Nature, 348, 169-171. Hing, H., Xiao, J., Harden, N., Lim, L., and Zipursky, S. L. (1999). Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97, 853-63. Jin, Y., Jorgensen, E., Hartwieg, E., and Horvitz, H. R. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 19, 539-548. Kaibuchi, K., Kuroda, S., and Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459-486. Kiyokawa, E., Hashimoto, Y., Kobayashi, S., Sugimura, H., Kurata, T., and Matsuda, M. (1998). Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev 12, 3331-6. Kozma, R., Sarner, S., Ahmed, S., and Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17, 1201-11. Letourneau, P. C., and Shattuck, T. A. (1989). Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones. Development 105, 505-19. Liebl, E. C., Forsthoefel, D. J., Franco, L. S., Sample, S. H., Hess, J. E., Cowger, J. A., Chandler, M. P., Shupert, A. M., and Seeger, M. A. (2000). Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEE trio reveal trio’s role in axon pathfinding. Neuron 26, 107-118. Loo, D. T., Kanner, S. B., and Aruffo, A. (1998). Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273, 23304-12. Lundquist, E. A., Reddien, P. W., Hartwieg, E., Horvitz, H. R., and Bargmann, C. I. (2001). Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475-4488. Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., and Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40-6. Mclntire, S. L., Jorgensen, E., Kaplan, J., and Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337-341. Newsome, T. P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., and Dickson, B. J. (2000). Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283-294. Nolan, K. M., Barrett, K., Lu, Y., Hu, K. Q., Vincent, S., and Settleman, J. (1998). Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev 12. 3337-42. O’Brien, S. P., Seipel, K., Medley, Q. G., Bronson, R., Segal, R., and Streuli, M. (2000). Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc. Natl. Acad. Sci. U S A. 97, 12074-12078. Ohta, Y., Stossel, T. P., and Hartwig, J. H. (1991). Ligand-sensitive binding of actin-binding protein to immunoglobulin G Fc receptor I (Fc gamma RI). Cell 67, 275-82. Ott, I., Fischer, E. G., Miyagi, Y., Mueller, B. M., and Ruf, W. (1998). A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol 140, 1241-53. Reddien, P. W., and Horvitz, H. R. (2000). CED-2/Crkll and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat. Cell Biol. 2, 131-136. Sanders, L. C., Matsumura, F., Bokoch, G. M., and de Lanerolle, P. (1999). Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083-5. Scita, G., Tenca, P., Frittoli, E., Tocchetti, A., Innocenti, M., Giardina, G., and Di Fiore, P. P. (2000). Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 19, 2393-8. Settleman, J. (2001). Rac’n Rho: the music that shapes a developing embryo. Dev. Cell 1,321-331. Sharma, C. P., Ezzell, R. M., and Arnaout, M. A. (1995). Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J Immunol 154, 3461-70. Spencer, A. G., Orita, S., Malone, C. J., and Han, M. (2001). A RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U S A. 98, 13132-13137. Steven, R., Kubiseski, T. J., Zheng, H., Kulkami, S., Mancillas, J., Ruiz Morales, A., Hogue, C. W., Pawson, T., and Culotti, J. (1998). UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785-795. Sulston, J. E. (1976). Post-embryonic development in the ventral cord of Caenorhabditis elegans. Phil. Trans. Roy. Soc. (Lond.) B 275, 287-297. Sulston, J. E., and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-56. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119. Van Aelst, L., and D’Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev 11, 2295-322. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. Roy. Soc. (Lond.) B 314, 1-340. Wu, Y. C., and Horvitz, H. R. (1998). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501-4. Wu, Y. C., Tsai, M. C., Cheng, L. C., Chou, C. J., and Weng, N.Y. (2001). C. elegans CED-12 acts in the conserved crkll/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491-502. Zhou, Z., Caron, E., Hartwieg, E., Hall, A., and Horvitz, H. R. (2001). The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477-489. Zipkin, I. D., Kindt, R. M., and Kenyon, C. J. (1997). Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 90, 883-894. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75286 | - |
dc.description.abstract | Rac GTPases的功能和細胞骨骼重組有關,在許多發育過程中扮演關鍵性的角色;然而在多細胞生物體發育過程中如何調控這些分子的活性卻不是非常清楚。ced-10和mig-2是線蟲的兩個Rac GTPases。較強的ced-10突變會造成蟲體運動不協調;mig-2 null mutation的突變株運動正常,整體影響不大。為了進一步暸解ced-10和mig-2在神經細胞發育過程中所扮演的角色和上游分子的調控機制,我們以遺傳學方法分析ced-10和mig-2在特定感覺和運動神經元發育過程中的功能。 我們發現ced-10和mig-2是兩條獨立的訊息傳導路裡,共同控制P細胞遷移以及D型運動神經元的軸突生長。這兩個 Rac GTPases也共同控制amphid感覺神經元的軸突生長,但amphid樹突的形成卻不需要ced-10和mig-2的參與。實驗結果顯示在P細胞遷移以及D型運動神經元和amphid感覺神經元軸突生長過程中,unc-73這個Trio-like guanine nucleotide exchange factor (GEF)可活化ced-10和mig-2,作為它們共同的GEF。此外作用在ced-10上游來控制 DTC細胞遷移和死細胞吞噬的rac調控因數:ced-2/Crkll和ced-5/DOCK180,在D型運動神經元軸突生長時作用在 ced-10和mig-2上游,P細胞遷移時則只作用在mig-2上游。然而在amphid感覺神經元軸突生成時,ced-2和ced-5都不參與其中。由此可知:在各種細胞的發育過程中,不同的rac上游調控因數以各種不同的方式來調控ced-10和 mig-2的活性。 | zh_TW |
dc.description.abstract | Rac GTPases are involved in cytoskeletal rearrangement and act as molecular switch in various morphogenic events. However, the regulation of their activities during the development of multicellular organisms is not well understood. ced-10 and mig-2 are members of Rac GTPase family in C.elegans. A strong ced-10 mutation causes the uncoordinated phenotype while the null mutation in mig-2 does not have a strong influence in neuronal development in general. To understand roles of ced-10 and mig-2 and identify their respective upstream regulators during neuronal development we have undertaken genetic approaches and analyzed their functions in the development of specific motor and sensory neurons. We showed that ced-10 and mig-2 act redundantly to control P cell migration and the axon outgrowth of D type motoneurons. These two Rac GTPases also control amphid axon outgrowth in a redundant fashion but their activities are not required for the amphid dendrite formation. Our genetic data indicate that unc-73, which encodes a protein related to Trio-like guanine nucleotide exchange factor, acts as an activator of ced-10 and mig-2 during P cell migration and axon outgrowth of D type motoneurons and amphid sensory neurons. Furthermore, rac regulators ced-2/crkll and ced-5/dock180 that function upstream of ced-10 during DTC migration and cell-corpse engulfment act genetically upstream of ced-10 and mig-2 during axon outgrowth of D-type motor neurons and appear to act on mig-2 rather than ced-10 during P cell migration. However, neither ced-2/crkll nor ced-5/dock180 is involved in amphid axon outgrowth. Therefore, distinct rac regulators control ced-10 and mig-2 differentially in various cellular processes. | en |
dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2002 | en |
dc.description.tableofcontents | 摘要……………………………………………………………………………………………………………………………1 Abstract………………………………………………………………………………………………………………………2 前言……………………………………………………………………………………………………………………………3 結果 ced-10和mig-2共同控制D型運動神經元和amphid感覺神經元的發育 ………………………………………………7 D型運動神經元和amphid感覺神經元發育過程中unc-73作用在ced-10和mig-2的上游 ……………………………8 ced-2和ced-5經由mig-2而非ced10來控制P細胞遷移…………………………………………………………………10 ced-2和ced-5作用在ced-10和mig-2的上游來控制D型運動神經元軸突生長 ………………………………………11 amphid感覺神經元的軸突生長需要UNC-73 GEF1和GEF2的活性卻不需要ced-2、ced-5和ced-12的參與…………12 討論……………………………………………………………………………………………………………………………13 材料和方法……………………………………………………………………………………………………………………16 致謝……………………………………………………………………………………………………………………………18 參考資料………………………………………………………………………………………………………………………18 圖表……………………………………………………………………………………………………………………………24 附錄……………………………………………………………………………………………………………………………32 | |
dc.language.iso | zh-TW | |
dc.title | 不同的Rac活化路徑控制線蟲的神經細胞遷移和軸突生長 | zh_TW |
dc.title | Distinct Rac activation pathways control C.elegans cell migration and axon outgrowth | en |
dc.date.schoolyear | 90-2 | |
dc.description.degree | 碩士 | |
dc.relation.page | 33 | |
dc.rights.note | 未授權 | |
dc.contributor.author-dept | 生命科學院 | zh_TW |
dc.contributor.author-dept | 動物學研究所 | zh_TW |
顯示於系所單位: | 動物學研究所 |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。