請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75277完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 黃元照 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:29Z | - |
| dc.date.available | 2021-07-01T08:12:29Z | - |
| dc.date.issued | 2002 | |
| dc.identifier.citation | 史金燾、藍伯倫(1993)弧邊招潮蟹食性的探討。臺灣省立博物館年刊,35: 67-78
李榮祥(2001)台灣賞蟹情報。大樹出版社,臺北,第108頁 沈明來(1993)試驗設計學。九州圖書文物有限公司,臺北 吳玲毅(1995)高雄港附近水域大鱗鯔之食性研究。國立中山大學海洋資源研究所碩士論文 施習德(1994)招潮蟹。國立海洋生物博物館。 陳俊強(2000)高屏溪口紅樹林復育記事。屏東縣野鳥學會網站, http:// www3. nsysu.edu. tw/ shrike/ article6. htm 莊玉珍、王惠芳(2001)台灣的濕地。遠足文化,臺北縣,第124頁 堵南山編著(1993)甲殼動物學。科學出版社,北京,第743頁 張品青(1994)竹圍紅樹林地區沈積底泥之營養價值與表層食底泥動物族群密度關係的探討。國立臺灣海洋大學海洋生物研究所碩士論文 陳恩理、陳章波(1994)底樓無脊椎動物群聚研究於海岸濕地烏類保護區規劃之角色。第一屆海岸濕地生態及保育研討會論文集,第144~154頁 楊志良(1995)生物統計學新論(增修版)。巨流圖書公司,臺北市。 楊小慧(1998)淡水竹圍紅樹林濕地有機物質在底棲碎屑食者中的傳遞:穩定同位素分析之應用。國立台灣大學漁業科學研究所碩士論文 蔡嘉揚、陳炳煌(1994)以覆網實驗研究濱鷸之覓食生態。第一屆海岸濕地生態及保育研討會論文集,第46-67頁 劉麗芳(2000)淡水竹圍紅樹林區食底泥動物群聚體結構的分析。國立台灣海洋大學海洋生物研究所碩士論文 謝蕙蓮、黃守忠、李坤瑄及陳章波(1993)潮間帶底棲生態調查法。生物科學 36: 71~80 謝蕙蓮(1995)淡水河紅樹林沼澤區多毛類群聚結構的時空變化:沈積物及微棲地的影響。紅樹林生態系研討會論文集,第199~222頁 Benner R, Fogel ML, Sprague EK,Hodson RE (1987) Deletion of 13C in lignin and its implication for stable carbon isotope studies. Nature 329: 708-710 Boutton TW (1991) Stable carbon isotope ratios of natural materials: Ⅱatmospheric, terrestrial, marine, and freshwater environments. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic Press, New York, pl73-185 Cabana G, Rasmussen JB (1994) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci 52: 2736-2746 Campell NA (1996) Biology. University of California,Riverside. pl99-200 Cheng IJ, Levinton JS, McCartney M, Martinez D, Weissburg MJ (1995) A bioassay approach to seasonal variation in the nutritional value of sediment. Mar Ecol Prog Ser 94: 275-285 Chmura GL,Aharon P, Socki RA, Abernethy R (1987) An inventory of δ13C abundances in coastal wetlands of Louisiana, USA: Vegetation and sediments. Oecologia. 74: 264-271 Chong VC, Low CB, Ichikawa T (2001) Contribution of mangrove detritus to juvenile prawn nutrition: a dual stable isotope study in a Malaysian mangrove forest. Mar Biol 138: 77-86 Christeller JT, Laing WA, Troughton JH (1976) Isotope discrimination by ribulose 1-5-diphosphate carbox-ylase. Plant Physiology 57: 580-582 Coffin RB, Fry B, Peterson BJ, Wright RT (1989) Carbon isotopic compositions estuarine bacteria. Limnol. Oceanogr 34(7): 1305-1310 Couch CA (1989) Carbon and nitrogen stable isotopes of meiobenthos and their food resource. Estuarine Coastal Shelf Sci. 33: 433-441 Crane J (1975 ) Fildder crabs of the world (Ocypodidae: genus Uca). Princeton Uniy. Press, Princeton. P736 Crosby MP (1985 ) The use of rapid rediolabeling method for measuring ingestion rate of detritivore. J EXP Mar Biol Ecol 93: 273-283 Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar Ecol Prog Ser 121: 99-116 Deegan LA, Garritt RH (1997 ) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147: 31-47 DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42: 495-506 DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45: 341-351 Eggers T, Jones TH (2000) You are what you eat … or are you TREE 15: 265-266 Ehleringer JR, Rundel PW (1989) Stable isotopes: history, units, and nstrumentation. In: Rundel PW, Nagy KA (eds) Stable isotopes in ecological research. Spring-Verlag, New York, pl-15 Ember LM, Williams DF, Morris JT (1987 ) Processes that influence carbon isotope variation in Salt marsh sediment. Mar Ecol Prog Ser 36: 33-42 Fantle MS, Dittel Al, Schwalm SM, Epifanio CE, Fogel ML (1999 ) A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and indidual amino acid. Oecologia 120: 416-426 France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: food web implication. Mar Ecol Prog Ser 124: 307-312 Fry B, Sherr EB (1989) δ13C measurements as indicators of carbon flow in marine and Freshwater ecosystem. In: Rundel PW, Nagy KA (eds) Stable isotopes in ecological research. Springer-Verlag, New York, 196-229 Gaebler OH, Vitti TG, Vuknlirovich R (1966 ) Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Can J Biochem 44: 1249-1257 Gearing JN(1991) The study of diet and trophic relationships through natural abundance δ13C. In : Coleman DC, Fry B (eds) New York Carbon isotope techniques. Academic Press, 201-218 Haines EB (1976a) Stable carbon isotope ratio in the biota, soil and tidal Water of a Georgia salt marsh. Estuar Coast Shelf Sci 4: 609-616 Haines EB, Montarue CL (1976b) Relation between the stable carbon isotope composition of fiddler crabs, plants, and in a salt marsh. Limnol and Oceanogr 21: 880-883 Haines EB (1977) The origins of detritus in Georgia salt marsh estuaries. Oikos 29: 254-260 Haines EB, Montarue CL (1979) Food source of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60 (l): 45-56 Herman MJ, Middelburg JJ, Widdows J, Lucas CH, Heip HR(2000) Stable isotopes as trophic tracers: conbining field sampling and manipulative labeling of food resoures for macrobenthos. Mar Ecol Prog Ser 204: 79-92 Hemminga MA, Mateo MA (1996) Stable carbon isotope in seagrasses: variability in ratios and use in ecological studies. Mar Ecol Prog Ser 140: 285-298 Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314-326 Hobson KA, Wassenaar LI (1999) Stable isotope ecology: an introduction. Oecologia 120: 312-313 Hoffman JA, Katz J, Bertness MD (1984) Fiddler crab deposit-feeding amd meiofaunal aboundance in salt marsh habitats. J Exp Mar Biol Ecol 82: 161-174 Hsieh HL, Chang KH (1991) Habitat characteristics and occurrence of the spionid Pseudopolydora sp. On the tobecaps of the onuphid Diopatra bilobata (Polychaetete: Spionidae, Onuphidae). Bull Inst Zool, Acad Sin 30: 331-339 Hsieh HL,Kao WY, Chen CP, Liu PJ (2000) Detrital flows throuth the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon: δ13C signals. Mar Biol 136: 677-684 Hsieh HL, Chen CP, Chen YG, Yang HH (2002) Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary : δ13C and δ34S signals. Mar Ecol Prog Ser 227: 145-155 Icely JD, Jone DA (1978) Factors affecting the distribution of the genus Uca (Crustacea: Ocypodidae ) on an east African shores. Estuar Coast Shelf Sci 6: 315-325 Jone DA (1984 ) Crabs of the mangal ecosystem. In Por, F. D. and I. D. Dor (eds.) Hydrobiology of the Mangal. Vol. 20, p89-109. Dr W. Junk Publishers. The Hague. Kikuchi E, Wada E (1996) Carbon and nitrogen isotope ratios of deposit-feeding polychaetes in the Nskakita River estuary, Japan. Hydrobioogia 321: 69-75 Kline TC, Goering JJ, Mathisen, OA, Poe PH (1993 ) Recycling of elements transported upstream by runs of Pacific salmon. Ⅱ. δ15N and δ13C evidence in the Kvichak River, Bristol Bay, Southwestem Alaska. Can J Fish Aquat Sci 50: 2350-2365 Kwak TJ, Zedler JB (1997) Food web analysis of southern Calfonia coastal Wetlands using multiple stable isotopes. Oecologia. 110: 262-277 Langdon CJ, Newell RIE (1990) Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar Ecol Prog Ser 58: 299-310 Lee SY (2000) Carbon dynamics of Deep Bay, eastern Pearl River estuary China. Ⅱ: Trophic relationship based on carbon- and nitrogen-stable isotopes. Mar Ecol Prog Ser 205: l-10 Libes SM (1992) Reading the sedimentary record. the use of stable isotopes in the study of paleoceanography. In: Libes SM (ed.) An Introduction to Marine Biogeochemistry. John Wiley and Sons, New York, p577-591 Lopez GR, Cheng IJ (1983) Synoptic measurements of ingestion rate, ingestion selectively, and absorption efficiency of natural foods in the deposit-feeding mollusks, Nucula annulata (Bivalvia) and Hydrobia totteni (Gastropoda). Mar Ecol Prog Ser 11: 55-62 Lopez GR , Levinton JS (1978) The availability of microorganisms attached to sediment particles as food for Ilydrobia ventrosa Montagu (Gastropoda: Prosobranchia). Oecologia (Berl,). 32: 263-275 Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediment. Quat Rev Bio 62(3): 235-260 Levinton JS, Bianchi TS, Stewart S (1984) What is the role of particulate organic matter in benthic invertebrate nutrition Bull Mar Sci 35: 270-282 Macko SA, Ostrom NE (1994) Pollution studies using stable isotopes. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and ennironment science. Blackwell, Landon, p45-62 McMlelland JW, Valiela I, Michener RH (1997) Nitrogen stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Liminol and Oceanogr 42(5): 930-937 Melillo JM, Aber JD, Linkins AE,Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and Nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115: 189-198 Michener BH, Schell DM (1994) Stable isotope ratios as tracers in marine aquatic food web. In: Lajtha K, Michener RH (eds) Stable isotopes ecology and environmental science. Blackwell, London, pl38-157 Miller DC (1961) The feeding mechanisms of fildder crabs with ecological consideration of feeding adaption. Zool. New York 46: 89-100 Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48: 1135-1140 Neilson BJ, Cronin LE (1981) Esturaries and Nutrients, Humana Press, Clifton, New Jersey. Newell RIE. Marshall N, Sasekumar A, Chong VC (1995) Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Mar Biol 123: 595-606 Nithart M (2000) Comparison of stable carbon and nitrogen isotope signatures of the polychaete Nereis diversicolor from different estuaries sites. J Mar Biol Ass U.K. 80: 763-765 Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21: 110-126 Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science. 227: 1361-1363 Peterson BJ, Howarth RW, Garritt RH (1986) Sulfur and carbon isotopes as tracers of salt marsh organic matter flow. Ecology 67(4): 865-874 Peterson BJ, Howarth RW (1987) Sulfur, carbon, nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georia. Limnol Oceanogr 32(6): 1195~1213 Riera P,Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic Marennes-Ole ' ron. Estuar Coast Shelf Sci 42: 347-360 Riera P,Richard P (1997) Temporal variation of δ15N organic matter and oyster Crassostrea gigas in Marennes-Ole ' ron Bay (France): effect of freshwater inflow. Mar Ecol Prog Ser 147: 105 -115 Riera P,Richard P, Gre ' mare A, Blanchard G (1998 ) Food source of intertidal nematodes in the Bay of Marennes-Ole ' ron (France), as determined by dual stable isotope analysis. Mar Ecol Prog Ser 142: 303-309 Riera P (1998) δ15N of organic matter sources and bemthic invertebrates along an estuarine gradient in Marennes-Ole ' ron Bay (France): implications for the study of trophic structure. Mar Ecol Prog Ser 166: 143-150 Robertson JR, Fudge JA, Vermeer GK (1981) Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J Exp Mar Biol Ecol 53: 47-63 Rodelli MR, Gearing JN, Gearing PJ, Marshall PJ, Sasekumar A (1984) Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystem. Oecologia 61: 326-333 Rounick JS, Winterbourn MJ (1986) Satble carbon isotopes and carbon flow in ecosystems. Bioscience 36: 171-177 Smith BD, Cabot EL, Foreman RE(1985) Seaweed detritus Versus benthic diatoms as important food resources for dominant subtidal gastropods. J Exp Mar Biol Ecol 92: 143-156 Stribling JM, Cornwell JC (1997) Identification of important primary producers in a Chesapeake Bay tidal creek system using stable isotopes of carbon and Sulfur. Estuaries 20(l): 77-85 chaete, Capitella capitata. Mar Biol 44: 51-55 Tenore KR, Hanson RB (1980 ) Availability of detritus of different types and ages to a polychaete, acroconsurmer, Capitella capitata. Limnol Oceanogr 25(3): 553-558 Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animals tissues: implication for δ13c analysis of diet. Oecologia 57: 32-37 Wada E, Kabaya Y, Kurigara Y (1993) Stable isotopic structure of aquatic ecosystems. J Biosci. 18: 483-499 Wainright SC, Wdnstein MP, Able KW, Currin CA (2000) Relative important of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmites australis to brackish-marsh food webs. Mar Ecol Prog Ser 200: 77-91 Whelan T (1971) Stable carbon isotope fractionation in photosynthetic carbon metabolism. Doctoral dissertation, Texas Agricultural and Mechanical University, College Station, Texas, USA. Wilson JR, Ford CW (1973) Temperature influences on the in vitro digestibility and soluble carbohydrate accumulation of tropical and temperate grasses. Aust J Agric Res 24: 187-198 Wdfrath B (1992 ) Field experiments on feeding of European fiddler crab Uca tangeri. Mar Ecol Prog Ser 90: 39-43 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75277 | - |
| dc.description.abstract | 本研究主要利用穩定碳、氮同位素探討台灣海岸濕地(高雄林園紅樹林復育區)碎屑食物網組成及底棲食碎屑蟹類(雙齒近相手蟹、北方呼喚招潮蟹、網紋招潮蟹、清白招潮蟹、萬歲大眼蟹)對於不同有機物質來源(C3、C4植物與底棲藻類)的選擇與其利用。 紅樹林復育區中各樓地分區的優勢植物碎屑是構成該區內顆粒>62μm表層底泥中最主要的碳源成份,而底棲藻類(δ13C=20.2?)是顆粒<62?m表層底泥(δ13C=-23.9?-19.6?)的主要碳源組成。 食碎屑蟹類主要食物並非取決於棲地優勢基礎生產者。以混和模型理論分析螃蟹對於棲地優勢基礎生產者之碳源的吸收利用比例。結果發現吸收比例最多的為單葉鹹草(C4植物): 45.1?100%,其次為底棲藻類:0?81.0%,最差的為水筆仔與海茄苳(C3植物):9.3?12.3%。 推測螃蟹最優先吸收利用單葉鹹草(C4植物)碳源的原因為:(1)細菌及微生物分解C4植物的速度比C3植物更快,可以幫助螃蟹更快速的吸收C4植物碳源、(2)掉落的紅樹林葉片(C3植物)含有化學物質會抑制螃蟹的吸收利用。 食碎屑蟹類與表層底泥的δ13C值成直線相關,迴歸線斜率趨近於1,顯示表層底泥內所含的有機質碳源是螃蟹主要的食物來源,而螃蟹對於底泥中所含不同有機質來源(C3、C4植物與底棲藻類)之碳源具有不同的利用。C4植物區內的螃蟹(δ13C=-13.4?)利用了底質顆粒>62μm表層底泥(δ13C=-14.4?)中的C4植物碎屑(δ13C=-13.9?);在C3、C4植物混生區中的螃蟹(δ13C=-15.4?-14.5?)利用了表層底泥中所含的C4植物碎屑及部分底藻;C3 植物區內的螃蟹(δ13C=-19.7?)則傾向利用顆粒<62? m表層底泥(δ13C=-23.9?)中的底棲藻類及部分C3植物碎屑(δ13C= -30.2?-29.4?)。所以,螃蟹食物碳源主要來自C4植物及底棲藻類;C3植物相對並不重要。 食碎屑蟹類(δ15N=10.14?12.08?)的δ15N值與棲地優勢基礎生產者(δ15N = 7.34?13.19?)的值,平均相差約1.77?,所以食碎屑蟹類皆屬於初級消費者。這顯示林園紅樹林復育區內的食碎屑蟹類並不會因為棲地的變化而改變其營養階層。 | zh_TW |
| dc.description.abstract | This study is using the stable carbon and nitrogen isotopes to examine the selective utilization of benthic organic matter sources (C3, C4 plants, and benthic algae) by detrital-feeding crabs (Perisesarma bidens; Macrophthalmvs vanzai; Uca arcuata; Uca lacteal; Uca borealis) and the detrital food web structure in the Kaohsiung Lin-yuan mangrove estuary. The results indicate that the carbon source of sediment particles larger than 62 ? m comes mainly from the dominant plants detritus of each area. The carbon source of the sediment particles smaller than 62 ? m ( δ13C=-23.9?-19.6?) comes mainly from benthic algae (δ13C=-21.2?). The main food sources of detrital-feeding crabs do not lie on the dominant primary producer detritus in the area. Using the two-source mixing model and the dual isotope, three-source mixing model to calculate the utilization percentage of benthic organic matter sources (C3, C4 plants, and benthic algae) by detrital- feeding crabs. Results indicate that according to the utilized percentages from high to low, C4 plant (29.3?92.7%, Cyperus malaccensis), benthic algae (7.3?82.8%), and C3 plants (7.4?10.1%, Kandelia candel and Avicennia marina). We think that the reasons of preferential ingestion of C4 plants carbon by detrital- feeding crabs: (1) Detrital matter made from the C4 plant decomposed more rapidly ands supported a great microbial biomass than did detrital material made from C3 plant. (2) Degraded leaves of C3 plant can secrete chemical matter to restrain the crabs to eat. (3) Assimilation efficiency of detrital-feeding crabs can be increased significantly by microbial microbial colonization of the detritus. The δ13C values of detrital-feeding crabs and surface sediments are positive correlation, and the value of regression line slope is close to 1. The results indicate that the food source of detrital-feeding crabs comes mainly from the organic matter carbon sources of surface sediments. Therefore, Detrital-feeding crabs in different areas have different utilizations of sediments carbon organic sources (C3, C4 plants, and benthic algae). Crabs (δ13C=-13.4?) in the area with C4 plant assimilate C4 plant (δ13C=-13.9?) detritus of the sediment particles larger than 62 ? m (δ13C= -14.4?). Crabs (δ13C= -15.4?-14.5?) in the area with a mixture of C3 and C4 plants assimilate C4 plant detritus and benthic algae of the surface sediments. Crabs (δ13C=-19.7?)in the area with C3 plants assimilate benthic algae and partly C3 plant (δ13C=-13.9?)detritus of the sediment particles smaller than 62 ? m (δ13C=-14.4?). Therefore, Food sources of detrital-feeding crabs come mainly from C4 plant and benthic algae, C3 plants are relatively not important. The δ15N values of the detrital- feeding crabs (δ15N= 10.1?12.1?)differ from the dominant primary producer (δ15N= 7.3?13.2?)by 1.77?. Thus, the detrital-feeding crabs are primary consumers. The result indicates that the detrital-feeding crabs did not change the trophic level in different areas of the Kaohsiung Lin-yuan mangrove estuary. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:29Z (GMT). No. of bitstreams: 0 Previous issue date: 2002 | en |
| dc.description.tableofcontents | 謝辭………………………………………………………………………………………………I 中文摘要…………………………………………………………………………………………Ⅱ 英文摘要…………………………………………………………………………………………Ⅲ 目錄………………………………………………………………………………………………Ⅳ 表目錄……………………………………………………………………………………………Ⅷ 圖目錄……………………………………………………………………………………………Ⅸ 第一章、前言……………………………………………………………………………………1 1.1 海岸濕地碎屑食物網……………………………………………………………………1 1.2 穩定同位素在濕地生態系的應用………………………………………………………2 1.3 穩定同位素的原理介紹…………………………………………………………………3 1.4 濕地生態系的穩定碳同物素組成………………………………………………………4 1.5 綜合文獻分析底泥有機物質、優勢植物與招潮蟹之關係……………………………5 1.6 綜合文獻分析結論與假設………………………………………………………………7 第二章、材料與方法……………………………………………………………………………11 2.1 研究地點…………………………………………………………………………………11 2.2 研究設計…………………………………………………………………………………12 2.3 野外樣品採集……………………………………………………………………………12 2.3.1 維管束植物…………………………………………………………………………12 2.3.2 螃蟹…………………………………………………………………………………12 2.3.3 底泥沈積物…………………………………………………………………………13 2.3.4 底樓性微藻類………………………………………………………………………13 2.4 實驗室分析方法…………………………………………………………………………14 2.4.1 穩定同位素樣品處理………………………………………………………………14 2.4.2 穩定碳、氮同位素分析……………………………………………………………14 2.4.3 有機物含量分析……………………………………………………………………17 2.4.4 底質粒徑分析………………………………………………………………………17 2.5 穩定碳、氮同位素多重來源混合模型理論分析………………………………………17 2.5.1 二來源混合模型理論……………………………………………………………17 2.5.2 雙重同位素-三來源混合模型理論 ……………………………………………18 2.6 統計分析…………………………………………………………………………………18 2.7 底樓食碎屑蟹類、樓地優勢基礎生?者與表層底泥之相關分析……………………19 第三章、結果……………………………………………………………………………………29 3.1 樓地特徵…………………………………………………………………………………29 3.1.1 底質粒徑、粉泥/ 粘土含量及篩選度……………………………………………29 3.1.2 有機物含量分析……………………………………………………………………29 3.2 基礎生?者的穩定同位素值………………………………………………………………30 3.3 底泥有機物質的穩定同位素值…………………………………………………………30 3.3.1 穩定碳同位素………………………………………………………………………30 3.3.2 穩定氮同位素………………………………………………………………………30 3.4 螃蟹的穩定同位素值……………………………………………………………………32 3.4.1 雙齒近相手蟹………………………………………………………………………32 3.4.2 北方呼喚招潮蟹……………………………………………………………………33 3.4.3 網紋招潮蟹…………………………………………………………………………33 3.4.4 萬歲大眼蟹…………………………………………………………………………33 3.4.5 清白招潮蟹…………………………………………………………………………34 3.4.6 各樓地分區螃蟹穩定同位素值之關係………………………………………………34 3.5 底樓食碎屑動物對於各樓地分區內不同有機物質來源的利用關係…………………34 3.5.1 泥沙灘區……………………………………………………………………………35 3.5.2 單葉鹹草區…………………………………………………………………………35 3.5.3 鹹草區與水筆仔混生區……………………………………………………………35 3.5.4 紅樹林區……………………………………………………………………………36 3.6 棲地表層底泥有機物質、優勢基礎生產者與底棲食碎屑蟹類之間的相關性………36 3.6.1 棲地表層底泥有機物質中所含優勢基礎生產者的碳源組成關係………………36 3.6.2 底樓食碎屑蟹類對棲地表層底泥有機物質的碳源選擇與利用…………………37 3.6.3 底棲食碎屑蟹類對樓地優勢基礎生產者的碳源選擇與利用……………………38 3.7 各棲地分區內底棲食碎屑蟹類對於優勢基礎生產者的吸收利用比例分析…………39 3.7.1 泥沙灘區底棲食碎屑蟹類吸收利用比例分析……………………………………39 3.7.2 單葉鹹草區內底棲食碎屑蟹類吸收利用比例分析………………………………40 3.7.3 鹹草與水筆仔混生區內底棲食碎屑蟹類吸收利用比例分析……………………40 3.7.4 紅樹林區內底棲食碎屑蟹類吸收利用比例分析…………………………………41 第四章、討論……………………………………………………………………………………61 4.1 棲地特徵…………………………………………………………………………………61 4.2 基礎生產者的穩定同位素值……………………………………………………………61 4.2.1 陸生維管束植物……………………………………………………………………61 4.2.2 底棲性微藻類………………………………………………………………………63 4.3 表層底泥有機物質………………………………………………………………………64 4.4 底棲食碎屑蟹類對棲地表層底泥有機物質的選擇與吸收利用………………………65 4.5 底棲食碎屑蟹類對棲地優勢基礎生產者的選擇與吸收利用…………………………66 4.5.1 泥沙灘區底棲食碎屑蟹類的吸收利用……………………………………………67 4.5.2 草葉鹹草區底棲食碎屑蟹類的吸收利用…………………………………………67 4.5.3 水筆仔與鹹草混生區底棲食碎屑蟹類的吸收利用………………………………69 4.5.4 紅樹林區底棲食碎屑蟹類的吸收利用……………………………………………69 4.6 底棲食碎屑蟹類對C4植物的選擇性利用(螃蟹δ13C值偏向C4植物)之因素探 ……69 4.7 底棲碎屑食物網結構分析………………………………………………………………71 第五章、結論……………………………………………………………………………………72 參考文獻…………………………………………………………………………………………74 附錄………………………………………………………………………………………………83 | |
| dc.language.iso | zh-TW | |
| dc.title | 海岸底棲食碎屑蟹類對有機物質來源的選擇性利用:穩定碳、氮同位素分析應用 | zh_TW |
| dc.title | Selective utilization of benthic organic matter sources by detrital-feeding crabs in the estuary: δ13C and δ15N signals | en |
| dc.date.schoolyear | 90-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 99 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
