請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75266完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | 黃仁德 | zh_TW |
| dc.date.accessioned | 2021-07-01T08:12:26Z | - |
| dc.date.available | 2021-07-01T08:12:26Z | - |
| dc.date.issued | 2000 | |
| dc.identifier.citation | 周銘翊。1999。不同鈣環境對?郭魚仔魚鈣離子平衡德影響。私立東海大學生物學系研究所碩士論文。 Alderdice, D.F. 1988. Osmotic and ionic regulation in teleost eggs and larvae. In: W.H. Hoar, and D. J. Randall, (eds.), Fish Physiology. Vol.11A. Academic Press, San Diego. pp. 163-251. Ando, M. and Nagashima, K. 1996. Intestinal Na+ and Cl- levels control drinking behavior in the seawater-adapted eel Anguilla japonica. J. Exp. Biol. 199:711-716. Avella, M., Masoni, A., Bornancin, M. and Mayer-Gostan, N. 1987. Gill morphology and sodium influx in the rainbow trout (Salmon gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 241:159-169. Ayson, F.G., Kaneko, T., Hasegawa, S. and Hirano, T. 1994. Development of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia, Oreochromis mossambicus, in fresh water and seawater. J. Exp. Zool. 270:129-135. Bath, R.N. and Eddy, F.B. 1979. Salt and water balance in rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. J. Exp. Biol. 83:193-202. Brown, D. and Breton, S. 1996. Mitochondria-rich, proton-secreting epithelial cells. J. Exp. Biol. 199:2345-58. Chang, M.W. 1996. Effects of cadmium on calcium uptake in newly-hatched tilapia larvae, Oreochromis mossambicus. Master Thesis, Tunghai University. Conway, E.J. 1957. Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle. Physiol. Rev. 37:84-132. Cutler, C.P., Sanders, I.L., Hazon, N. and Cramb, G. 1995a. Primary sequence, tissue specificity and mRNA expression of Na+, K+-ATPase a subunit in the European eel (Anguilla anguilla). Comp. Biochem. Phsyiol. 111B:567-573. Cutler, C.P., Sanders, I.L., Hazon, N. and Cramb, G. 1995b. Primary sequence, tissue specificity and mRNA expression of Na+, K+-ATPase al subunit in the European eel (Anguilla anguilla). Fish Phsyiol. Biochem. 14:423-429. Cutler, C.P., Sanders, I.L. and Cramb, G. 1997. Expression of Na+, K+-ATPase p-subunit isoforms in the European eel (Anguilla anguilla). Fish Physiol. Biochem. 17:371-376. Dange, A.D. 1985. Branchial Na+, K+-ATPase activity during osmotic adjustments in two freshwater euryhaline teleosts, tilapia (Sarotherodon mossambicus) and orange chromid (Etropuls maculatus). Mar. Biol. 87:101-107. D’Cotta, H.C., Gallais, C., Saulier, B. and Prunet, P. 1996. Comparison between parr and smolt Atlantic salmon (Salmo salar) a subunit gene expression of Na,KATPase in gill tissue. Fish Physiol. Biochem. 15:29-39. Dharmamba, M., Bornancin, M. and Maetz, J. 1975. Environmental salinity and sodium and chloride exchanges across the gill of Tilapia mossambica. J. Physiol., Paris. 70:627-636. Duranton, C., Tauc, M., Avella, M. and Poujeol, P. 1997. Chloride channels in primary cultures of seawater fish (Dicentrarchus labrax) gill. Am. J. Physiol., 273:C874-C882. Eddy, F.B. and Bath, R.N. 1979. Ionic regulation in rainbow trout (Salmo gairdneri) adapted to fresh water and dilute sea water. J. Exp. Biol. 83:181-192. Evans, D.H. 1979. Fish. In: Maloiy, G.M.O. (ed.), Comparative physiology of osmoregulation in animals, Vol.1. Academic Press, London, pp.305-390. Fenwick, J.C., Wendelaar Bonga, S.E. and Flik, G. 1999. In vivo bafilomycin-sensitive Na uptake in young freshwater fish. J. Exp. Biol. 202:3659-3666. Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N. and Wendelaar Bonga, S. 1986. Effects of low ambient calcium levels on whole-body Ca2+ flux rates and internal calcium pools in the freshwater cichlid teleost, Oreochromis mossambicus. J. Exp. Biol. 120:249-264. Franson, M.A.H. 1985. Standard methods for the examination of water and wasterwater, 16th ed. American Public Health Association, Washington, DC. USA. pp. 292-294. Goss, G.G., Laurent, P. and Perry, S. F. l992a. Evidence for a morphological component in acid-base regulation during environmental hypercapnia in the brown bullhead (Ictalurus nebulosus). Cell Tiss. Res. 268:539-52. Goss, G.G., Perry, S.F., Wood, C.M. and Laurent, P. 1992b. Mechanisms of ion and acid-base regulation at the gills of freshwater fish. J. Exp. Zool. 263:143-159. Guggino, W.B. 1980a. Water balance in embryo of Fundulus heteroclitus and F bermudae in sea water. Am. J. Physiol. 238:R36-R41. Guggino, W.B. 1980b. Salt balance in embryo of Fundulus heteroclitus and F bermudae in sea water. Am. J. Physio. 238:R42-R49. Hiroi, J., Kaneko, T. and Tanaka, M. 1999. In vivo sequential changes in chloride cell morphology in the yolk-sac membrane of mozambique tilapia (Oreochromis mossambicus) embryos and larvae during seawater adaptation. J. Exp. Biol. 202:3485-3495. Hootman, SR., and Philpott, C.W. 1978. Rapid isolation of chloride cells from pinfish gill. Anat. Rec. 190:687-702. Hossler, F.E. 1980. Gill arch of the mullet, Mugil cephalus. III. Rate of response to salinity changes. Am. J. Physiol. 238:R160-R164. Hwang, P.P. and Hirano, T. 1985. Effects of environmental salinity on intercellular organization and junctional structure of chlorid cells in early stages of teleost development. J. Exp. Zool. 236:115-126. Hwang, PP. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94:643-649. Hwang, PP. 1988a. Ultrastructural study on multicellular complex of chloride cells in teleosts. Bull. Inst. Zool. Acad. Sinica. 27:225-233. Hwang, P.P. 1988b. Multicellular complex of chloride cells in the gills of freshwater teleosts. J. Morphol. 196:15-22. Hwang, PP., Sun, C.M. and Wu, S.M. 1988. Characterization of gill Na+-K+-ATPase from tilapia Oreochromis mossambicus. Bull. Inst. Zool. Acad. Sinica. 27:49-56. Hwang, P.P. 1989. Distribution of chloride cells in teleost larvae. J. Morphol. 200:1-8. Hwang, P.P., Sun, C.M. and Wu, S.M. 1989. Changes of plasma osmolarity, chloride concentration and gill Na+-K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100: 295-299. Hwang, P.P. 1990. Immunocytochemical identification of prolactin cells in the pituitary gland of tilapia larvae (Oreochromis mossambicus: Teleostei). Cell Tiss. Res. 260:203-205. Hwang, P.P., Tsai, Y.N. and Tung, Y.C. 1994. Calcium balance in embryos and larvae of the freshwater-adapted teleost, Oreochromis mossambicus. Fish Physiol. Biochem. 13:325-333. Hwang, P.P., Tung, Y.C. and Chang, M.H. 1996. Effect of environmental calcium uptake in tilapia larvae (Oreochromis mossambicus). Fish Physiol. Biochem. 15:363-370. Hwang, P.P., Fang, M.J., Tsai, J.C., Huang, C.J. and Chen, S.T. 1998. Expression of mRNA and protein of Na+, K+-ATPase a-subunit in gills of tilapia (Oreochromis mossambicus). Fish Physiol. Biochem. 19:95-102. Hwang, P.P., Lee, T.H., Weng, C.F., Fang, M.J. and Cho, G.Y. 1999. Presence of Na+, K+-ATPase in mitochondria-rich cells in yolk-sac epithelium of larvae of the teleost, Oreochromis mossamibcus. Physiol. Biochem. Zool. 72(2):138-144. Jobling, M. 1995a. Osmotic and ionic regulation - water and salt balance. In: Environmental Biology of Fishes. Chapman and Hall, London, UK. pp. 211-250. Jobling, M. 1995b. Environmental biology of fishes. 211-249. Chapman and Hall. Kamiya, M. 1972. Sodium-potassium-activated adenosinetriphosphatase in isolated chloride cells from eel gills. Comp. Biochem. Physiol. 43B:611-617. Kamaky, K.J. 1986. Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am. Zool. 26:209-224. Katoh, F., Shimizu, A., Uchida, K. and Kneko, T. 2000. Shift of chloride cell distribution during early life stages in seawater-adapted killifish, Fun dulus heteroclitus. Zool. Sci. 17:11-18. Keys, A.B. and Willmer, E.N. 1932. “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. Lond. 76:368-378. King, J.A.C., and Hossler, F.E. 1991. The gill arch of the striped bass (Morone saxatilis). IV. Alterations in the ultrastructure of chloride cell apical crypts and chloride efflux following exposure to seawater. J. Morphol. 209:165-176. Kisen, G., Gallais, C., Auperin, B., Klungland, H., Sandra, O., Patrick, P. and Andersen, O. 1994. Northern blot analysis of the Na+, K+-ATPase a subunit in salmonids. Comp. Biochem. Physiol. 107B:255-259. Kultz, D., and Onken, H. 1993. Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress. Mar. Biol. 117:527-533. Kultz, D., Jurss, K. and Jonas, L. 1995. Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossamcibus). Cell Tissue Res. 279:65-73. Lasker, R. and Threadgold, L.T. 1968. “Chloride cells” in the skin of the larval sardine. Exp. Cell Res. 52:582-590. Lee, T.H., Lin, H.C., Yu, M.J., Huang, F.L. and Hwang, P.P. 1995. Mitochondria-rich cells in gills of the euryhaline teleost, Oreochromis mossambicus. Zool. Stud. 34:239-240. Lee, T. H., Hwang, P.P., Lin, H.C. and Huang, F.L.1996. Mitochondria-rich cells in the branchial epithelium of the teleost, (Oreochromis mossambicus), acclimated to various hypotonic environments. Fish Physiol. Biochem. 15:513-523. Lee, T.H., Tsai, J.C., Fang, M.J., Yu, M.J. and Hwang, P.P. 1998. Isoform expression of Na+, K+-ATPase a-subunit in gills of the teleost, Oreochromis mossmbicus. Am. J. Physiol. 275:R926-R928. Lee, T.H., Weng, C.F. and Hwang, P.P. 1999. Direct evidence of Na+, K+-ATPase and Na,K,2Cl-cotransrpoter in gills of seawater-adapted tilapia, Oreochromis mossamibcus. Mar. Biol. (submitted). Li, J., Eygensteyn, J., Lock, R.A.C., Verbost, P.M., Van Der Heijden, A.J.H., Wendelaar Bonga, S.E. and Flik, G. 1995. Branchial chloride cells in larvae and juveniles of freshwater tilapia Oreochromis mossambicus. J. Exp. Biol. 198:2177-2184. Lin, G.R., C.F. Weng, J.I. Wang and Hwang, P.P. 1999. Effects of cortisol on ion regulation in developing tilapia (Oreochromis mossambicus) larvae on seawater adaptation. Physiol. Biochem. Zool. 72:397-404. Lin, H.C., Hwang, P.P. and Lee, J.H. 1999. Mitochondrion-rich cells in the embryonic yolk sac of Oreochromis mossambicus. J. Fish Biol. 54:648-655. Lin, L.Y., Weng, C.F. and Hwang, PP. 2000. Regulation of drinking rate in euryhaline tilapia larvae (Oreochromis mossambicus) during salinity challenges. Physiol. Biochem. Zool. (in press). Madsen, S.S., Jensen, M.K., Nohr, J. and Kristiansen, K. 1995. Expression of Na+, K+-ATPase in the brown trout, Salmo trutta : in vivo modulation by hormones and seawater. Am. J. Physiol. 269:R1339-R1345. Marshall, W.S. 1995. Transport processes in isolated teleost epithelia : opercular epithelium a d urinary bladder. In Fish Physiol. Vol. 14. Cellular and Molecular Approaches to Fish Ionic Regulation. C.M. Wood and T.J. Shuttleworth (eds.). Academic Press, San Diego, USA. pp. 1-23. Marshall, W.S., Emberley, T.R., Singer, T.D., Bryson, S.E. and Mccmick, S.D. 1999. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus Heteroclitus: a multivariable approach. J. Exp. Biol. 202:1535-1544. Miyazaki, H., Kaneko, T., Hasegawa, S. and Hirano, T. 1998. Developmental changes in drinking rate and ion and water permeability during early life stages of euryhaline tilapia, Oreochromis mossambicus, reared in fresh water and seawater. Fish Physiol. Biochem. 18:277-284. Morgan, I.J., Potts, W.T.W. and Oates, K. 1994. Intracellular ion concentrations in branchial epithelial cells of brown trout (Salmo trutta L.) determined by X-ray microanalysis. J. Exp. Biol. 194:139-151. Morgan, I.J. and Potts, W.T.W. 1995. The effects of the adrenoreceptor agonist phenylephrine and isoproterenol on the intracellular ion concentrations of branchial epithelial cells of brown trout (Salmo trutta L.). J. Comp. Physiol. B 165:458-463. Naon, R., and Mayer-Gostan, N. 1983. Separation by velocity sedimentation of the gill epithelial cells and their ATPases activities in the seawater adapted eel Anguilla anguilla L. Comp. Biochem. Physiol. 75A:541-547. Paley, R.K., Twitchen, I.D. and Eddy, F.B. 1993. Ammonia, Na, K and C1 levels in ranbow trout yolk-sac fry in response to external ammonia. J. Exp. Biol. 180:273-284. Payan, P., Mayer-Gostan, N. and Pang, P.K.T. 1981. Site of calcium uptake in the freshwater trout gill. J. Exp. Zool. 216:345-347. Perry, S.F., Haswell, M.S., Randall, D.J. and Farrell, A.P. 1981a. Branchial ionic uptake and acid-base regulation in the rainbow trout, (Salmo gairdneri). J. Exp. Biol. 92:289-303. Perry, S.F. and Randall, D.J. 1981b. Effects of amiloride and SITS on branchial ion fluxes in rainbow trout, (Salmo gairdneri). J. Exp. Zool. 215:225-228. Perry, S.F., Goss, G.G. and Fenwick, J.C. 1992a. Interrelationships between gill chloride cell morphology and calcium uptake in freshwater teleosts. Fish Physiol. Biochem. 10:327-337. Perry, S.F., Goss, G.G. and Laurent, P. 1992b. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can. J. Zool. 70: 1775-1786. Perry, S.F. and Laurent, P. 1993. Environmental effects on fish gill structure and function. In: Fish Ecophysiology. pp. 231-263. Edited by J. C. Rankin and F. B. Jensen. Chapman and Hall, London. Perry, S.F. and Goss, G.G. 1994. The effects of experimentally altered gill chloride cell aurface area on acid-base regulation in rainbow trout during metabolic alkalosis. J. Comp. Physiol. A. 164:327-336. Perry, S.F., Fryer, J.N. 1997. Proton pumps in the fish gill and kidney. Fish Physiol. Biochem. 17:363-369. Pisam, M. and Rambourg. A. 1991. Mitochondria-rich cells in the gill epithelium of teleost fishes: an ultrastructural approach. Int. Rev. Cyto1. 130:101-232. Potts, W.T.W., Foster, M.A. and Stather J.W. 1970. Salt and water balance in salmon smolts. J. Exp. Biol. 52:553-564. Rankin, J.C. and Boils, L. 1984. Hormonal control of water movement across the gills. In Fish Physiology, vol. l0B (W. S. Hoar and D. J. Randall, eds.), Academic Press, San Diego, pp. 177-197. Rossier, B.C., Geering, K. and Kraehenbuhl, J.P. 1987. Regulation of the sodium pump: how and why Trend. Biochem. Sci. 12:483-487. Sargent, J.R., Thomson, A.J. and Bornancin, M. 1975. Activities and localization of succinic dehydrogenase and Na,K-activated adenosine triphosphatase in the gills of fresh water and sea water eels (Anguilla anguilla). Comp. Biochem. Physiol. 51B:75-79. Schonrock, C., Morley, S.D., Okawasa, Y., Lederis, K. and Richter, D. 1991. Sodium and potassium-ATPase of the teleost fish Catostomus comsnersoni sequence, protein, structure and evolutionary conservation of the alpha subunit. Biol. Chem. Hoppe-Seyler. 372:279-286. Shiraishi, K., Kaneko, T., Hasegawa, S. and Hirano, T. 1997. Developmental of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res.288:583-590. Shikano, T. and Fujio, Y. 1998a. Relationships of salinity tolerance to immunolocalization of Na+, K+-ATPase in the gill epithelium during seawater and freshwater adaptation of the guppy, Poecilia reticulata. Zool. Sci. 15:35-41. Shikano, T. and Fujio, Y. 1998b. Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cellsin the gill epithelium during seawater and freshwater adaptation in euryhaline teleost, Poecilia reticulata. J. Exp. Zool. 28 1:80-89. Silva, P., Sololmon, R., Spoke, K., Epistein, F.H. 1977. Ouabain inhibition of gill Na+, K+-ATPase: relationship to active chloride transport. J. Exp. Zool. 99:419-426. Singer, T.D., Tucker, S.J., Marshall, W.S. and Higgins, C.F. 1998. A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F heteroclitus. Am. J. Physiol. 274:C715-C723. Tytler, P. and Blaxter, J.H.S. 1988. Drinking in yolk-sac stage larvae of the halibut, Hippoglussus hippoglossus (L.). J. Fish Biol. 32:493-494. Tytler, P. and Bell, MV. 1989. A study of diffusional permeability of water, sodium and chloride in yolk-sac larvae of cod (Gadus morhua L.). J. Exp. Biol. 147:125-132. Uchida, K., and Kaneko, T. 1996a. Enhanced chloride cell turnover in the gills of chum salmon fry in seawater. Zool. Sci. 13:655-660. Uchida, K., Kaneko, T., Uamauchi, K. and Hirano, T. 1996b. Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. J. Exp. Zool. 276:193-200. Ura, K., Soyano, K., Omoto, N., Adachi, S. and Yamauchi, K. 1996. Localization of Na+, K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the a-subunit. Zool. Sci. 13:219-227. Ura, K., Mizuno, S., Okubo, T., Chida, T., Misaka, N., Adachi, S. and Yamauchi, K. 1997. Immunohistochemical study on changes in gill Na+, K+-ATPase a-subunit during smoltification in the wild masu salmon, Oncorhychus masou. Fish Physiol. Biochem. 17:397-403. Van der Heijden, A.J.H., van der Meij, J.C.A., Flik, G. and Wendelaar Bonga, S.E. 1999. Ultrastructure and distribution dynamics of chloride cells in tilapia larvae in fresh water and seawater. Cell Tissue Res. 297:119-130. Witters, H.E., Puyrnbroeck, S.V. and Vanderborght, O.L.J. 1992. Branchial and renal ion fluxes and transepithelial electrical potential differences in rainbow trout, Oncorhynchus mykiss: effects of aluminum at low pH. Envir. Biol. Fish. 34:197-206. Witters, H.E., Berchmans, P. and Vangenechten, C. 1996. Immunolocalization of Na+, K+-ATPase in the gill epithelium of rainbow trout, Oncorhynchus mykiss. Cell Tissue Res. 283:461-468. Zadunaisky, J.A. 1984. The chloride cell: the active transport of chloride and the paracellular pathways. In Fish Physiology, Vol. XB. W.S. Hoar and D.J. Randall (eds.). Academic Press, Orlando, USA. pp. 129-176. Zadunaisky, J.A., Cardona, S., Au, L., Roberts, D.M., Fisher, E., Lowenstein, B., Cragoe, Jr. E.J. And Spring, K.R. 1995. Chloride transport activation by plasma osmolarity during rapid adaptation to high salinity of Fundulus heteroclitus. J. Membr. Biol. 143:207-217. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75266 | - |
| dc.description.abstract | 硬骨魚類在胚胎與仔魚初期,鰓、腎等滲透壓與離子調節器官雖尚未發育分化完備,但仍然能維持體內滲透壓與離子的恆定。相較於在成魚的研究,仔稚魚在面臨鹽度的改變時,鹽份的平衡調節機制之瞭解仍有不明之處。本研究以廣鹽性莫三比克吳郭魚(Oreochromis mossambicus)仔魚為研究材料,探討仔魚在發育過程中,面對環境鹽度變化時,氯離子的調節策略。實驗分成淡、海水長期適應與海水轉移兩部分,分別探討仔魚發育過程及海水轉移時,其體組織氯離子含量與流速(流進及流出速率)及Na+, K+-ATPase活性變化情形。 結果顯示,淡、海水長期適應仔魚由孵化第一天到第九天,體組織氯離子含量均無顯著增加,而且適應在兩種環境中仔魚的氯離子含量,在發育過程中並無顯著差異。在氯離子的流速方面,海水適應仔魚隨發育過程逐漸增加;至於淡水適應仔魚則到發育後期才顯著增加。在發育過程,海水適應仔魚的氯離子的流進及流出速率均遠比淡水適應仔魚高。此外,海水適應仔魚在鰓及卵黃囊膜上Na+, K+-ATPase活性皆比淡水適應仔魚高。此可能是因為海水仔魚需要大量主動排除體內氯離子,及平衡海水中大量氯離子的被動流進所致。在海水的轉移實驗部分,將孵化第三天淡水仔魚急遽轉移到20?海水中,仔魚體組織氯離子含量會迅速上升,在轉移後4-8小時即達到最高,而後逐漸下降,在轉移後24小時已與淡水控制組相仿。仔魚氯離子的流進及流出速率,同樣在轉移後4小時急遽上升,在轉移後16小時達到最高,隨即逐漸降低,在轉移後24小時時與海水控制組相近。以上結果顯示,仔魚在面臨鹽度改變時,可藉由同時調節氯離子之流進及流出速率,來調節仔魚體組織氯離子含量恆定。然而仔魚鰓及卵黃囊膜上Na+, K+-ATPase活性卻在轉移後24小時才顯著高於對造組。此顯示在Na+, K+-ATPase的活性尚未增加之前,仔魚便已有排鹽的情形,顯然在轉移早期,仔魚的排鹽機制並不是藉由增加 Na+, K+-ATPase的活性,而可能透過其他機制完成。 | zh_TW |
| dc.description.abstract | Embryos and larvae of several teleosts, even though their gills or kidneys are not well developed and functioning, are capable of maintaining the constancy of ions and osmolarity in their body fluids. However, little is known about how developing larvae regulate their salt balance upon salinity change. In this study, chloride regulation in developing tilapia larvae was investigated. Tilapia larvae were acclimated under either freshwater (FW) and seawater (SW) condition or were directly transferred from FW to SW. Whole-body chloride content, Cl- fluxes (influx and efflux) and Na+, K+-ATPase activity were monitored. Results show that there is no significantly increase in whole-body chloride contents in FW- or SW-acclimated larvae during 1-9 days after hatching, and the values in the FW- and SW-acclimated larvae were not significant different at respective developmental stages. Cl- influx and efflux, as well as the Na+, K+-ATPase activity of gill and yolk-sac epithelia in SW-acclimated larvae were higher than those in FW-acclimated ones. This suggested that the SW-acclimated larvae have much more active driving force to excrete chloride and maintain ionic balance in body. After transfer from FW to 20? SW, whole-body chloride content of larvae increased rapidly and reached a peak at 4-8 h after the transfer, then declined to near the level of FW-acclimated larvae (control). Both Cl- influx and efflux increased rapidly at 4 h after transfer and reached a peak at 16 h, then declined to near the level of FW-acclimated larvae (control). All the results suggest that developing tilapia larvae can regulate the whole-body chloride content upon SW challenge by modulating the both Cl- influx and efflux. A significant increase in gill and yolk-sac epithelia Na+, K+-ATPase activity did not occur until 24h after transfer, suggesting that some other mechanisms other than increasing the Na+, K+-ATPase activity may be involved in the early phase of SW acclimation in developing larvae. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-01T08:12:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2000 | en |
| dc.description.tableofcontents | 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . 1 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . 3 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . 4 硬骨魚類滲透壓調節. . . . . . . . . . . . . . . . . . . . . 4 魚類鰓部的MR細胞. . . . . . . . . . . . . . . . . . 4 MR細胞與Na+,K+-ATPase. . . . . . . . . . . . . . . . . . 5 海水MR細胞的排鹽機制. . . . . . . . . . . . . . . . . . . 6 淡水MR細胞的吸鹽機制. . . . . . . . . . . . 7 胚胎與仔魚初期之滲透壓與離子調節. . . . . . . . . 8 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . 11 材料與方法. . . . . . . . . . . . . . . . . . . . . . . . 12 一、實驗動物. . . . . . . . . . . . . . . 12 實驗種魚來源及飼育條件. . . . . . . . . . . . . 12 授精卵之取得與仔魚馴養. . . . . . . . . . . . . . 12 二、實驗用水. . . . . . . . . . . . . . . . . . . . . . . . 13 三、研究方法. . . . . . . . . . . . . . . . . 13 (一)仔魚體組織氯離子含量測定之建立. . . . . 13 (二)氯離子離子流速(Cl- flux rate)的測定. . . 15 (三)仔魚鰓及卵黃囊膜上Na+,K+-ATPase活性之測定. . . . . . . . . . . . . . 18 (四)實驗設計. . . . . . . . . . . . . . . . . . . . . . . . 22 結果. . . . . . . . . . . . . . . . . . 24 預備實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 仔魚體內氯離子含量之測定. . . . . . . . . . . . . . . 24 氯離子流進速率(C1- influx rate)測量方法之建立. . . . . . . . . 25 氯離子流出速率(Cl- efflux rate)測量方法之建立. . . . . . . . .. . . . . . 26 實驗一:海水適應與淡水適應仔魚發育過程中氯離子平衡變化. . . . . . . . . . . . . . 26 實驗二:海水適應與淡水適應仔魚其卵黃囊膜及鰓上,Na+,K+-ATPase活性之比較. . . . . . . . . . . . . . 27 實驗三:急遽鹽度轉移下仔魚之氯離子平衡. . . . . . . . . . . . . . . . 27 實驗四:急遽鹽度轉移後仔魚鰓及卵黃囊膜上Na+,K+-ATPase活性變化情形. . . . . . . . . 28 討論. . . . . . . . . . . . . . . . . . . . . 29 仔魚氯離子含量的測定. . . . . . . . . . . . . . 29 仔魚氯離子流速(流進與流出速率)之測定. . . . . . 30 仔魚發育過程中氯離子含量之變化. . . . . . . . . . . . . . . . . . . . . 31 仔魚發育過程中氯離子流速及Na+, K+-ATPase己活性之變化. . . . . . . . . . . . . . 32 仔魚鹽度轉移過程中氯離子含量、流速及Na+, K+-ATPase活性之變化. . . . . . . . 36 仔魚與成魚在水分及離子調節策略上之比較. . . . . 42 結語與展望. . . . . . . . . . . . . . . . . . . . . . 44 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 表與圖. . . . . . . . . . . . . . . . . . . 55 | |
| dc.language.iso | zh-TW | |
| dc.title | ?郭魚仔魚在海水適應過程中氯離子之調控 | zh_TW |
| dc.title | Chloride Regulation in Developing Tilapia (Oreochromis mossambicus)Larvae during Seawater Acclimation | en |
| dc.date.schoolyear | 89-2 | |
| dc.description.degree | 碩士 | |
| dc.relation.page | 71 | |
| dc.rights.note | 未授權 | |
| dc.contributor.author-dept | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
沒有與此文件相關的檔案。
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
