Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.author黃玉華zh_TW
dc.date.accessioned2021-07-01T08:12:25Z-
dc.date.available2021-07-01T08:12:25Z-
dc.date.issued2001
dc.identifier.citationBerrebi-Bertrand, I., Maixent, J. M., Christe, G. and Lelievre, L. G. 1990. Two active Na+/K+-ATPase of high affinity for ouabain in adult rat brain membranes. Biochim. Biophys. Acta 1021: 148-156
Bertorello, A. M., and Katz, A. I. 1993. Short-term regulation of renal Na-K-ATPase activity: physiological relevance and cellular mechanisms. Am. J. Physiol. 265: F743-F755
Bertorello, A. M., Ridge, K. M., Chibalin, A. V., Katz, A. I. and Sznajder, J. I. 1999. Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of α-subunits in lung alveolar cells. Am. J. Physiol. 276: L20-L27
Blanco, G., Berberian, G. and Beauge, L. 1990. Detection of a highly ouabain sensitive isoform of rat brainstem Na,K-ATPase. Biochim. Biophys. Acta 1027: 1-7
Blanco, G. and Mercer, R. W. 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol.275: F633-F650
Blanco, G., Sanchez, G., Melton, R. J., Tourtellotte, W. G. and Mercer, R. W. 2000. The αA isoform of the Na,K-ATPase is expressed in the germ cells of the testes. J. Histochem. Cytochem. 48: 1023-1032
Blaustein, M. P. 1993. Physiological effects of endogenous ouabain: control of intracellular Ca2 stores and cell responsiveness. Am. J. Physiol. 264:C1367-C1387
Chakraborti, P. K., Weisbart, M. and Chakraborti, A. 1987. The presence of corticosteroid receptor activity in the gills of the brook trout, Salvelinus fontinalis. Gen. Comp. Endocrinol. 66: 323-332
Chibalin, A. V., Katz, A. I. Berggren, P. O. and Bertorello, A. M. 1997. Receptor-mediated inhibition of renal Na+-K+-ATPase is associated with endocytosis of its α- and β- subunits. Am. J. Physiol. 273: C1458-C1465
Cutler, C. P., Sanders, I. L., Hazon, N. and Cramb, G. 1995a. Primary sequence, tissue specificity and expression of the Na+,K+-ATPase α1 subunit in the European eel (Anguilla anguilla). Comp. Biochem. Physiol. 111B: 567-573
Cutler, C. P., Sanders, I. L., Hazon, N. and Cramb, G.1995b. Primary sequence, tissue specificity and expression of the Na+,K+-ATPase β1 subunit in the European eel (Anguilla anguilla). Fish Physiol. Biochem. 14: 423-429
Crombie, H. J., Bell, M. V. and Tyler, P. 1996. Inhibition of sodium-plus-potassium-stimulated adenosine triphosphatase (Na+-K+-ATPase) by protein kinase C activators in the gills of Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. 113B: 765-772
D’Cotta, H. C., Gallais, C., Saulier, B. and Prunet, P. 1996. Comparison between parr and smolt Atlantic salmon (Salmo salar) α subunit gene expressing of Na+/K+ ATPase in gill tissue. Fish Physiol. Biochem. 15: 29-39
D’Cotta, H. C., Valotaire, C., Gac, F. L. and Prunet P. 2000. Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am. J. Physiol. 278: R101-R110
Doris, P. A. 1994. Regulation of Na,K-ATPase by endogenous ouabain-like material. Proc. Soc. Exp. Biol. Med. 205: 202-212
Epstein, F. H., Katz, A. I. and Pickford, G. E. 1967. Sodium and potassium-activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water. Science 156: 1245-1247
Ewart, H. S. and Klip, A. A. 1995. Hormonal regulation of the Na+-K+-ATPase: mechanisms underlying rapid and sustained changes in pump activity. Am. J. Physiol. 269: C295-C31l
Evans, D. H. 1997. The physiology of fishes. CRC press, New York, pp.157-176
Evans, D. H., Piermarini, P. M. and Potts, W.T.W. 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283: 641-652
Feschenko, M. S. and Sweadner, K. J. 1994. Conformation-dependent phosphorylation of Na,K-ATPase by protein kinase A and protein kinase C. J. Biol. Chem. 269: 30436-30444
Fisone, G., Cheng, S. X., Nairn, A. C., Czernik, A. J., Hemmings, Jr., Hoog, J.O., Bertorello, A. M., Kaiser, R., Bergman, T. and Jornvall, H. 1994. Identification of the phosphorylation site for camp-dependent protein kinase on Na+,K+-ATPase and effects of site-directed mutagenesis. J. Biol. Chem.269: 9368-9373
Forrest, J. N., Cohen, A. D., Schon, D. A. and Epstein, F. H. 1973. Na transport and Na-K-ATPase in gills during adaptation to seawater: effects of cortisol. Am. J. Physiol. 224: 709-713
Geering, K. 1990. The functional role of the β-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS L. 285: 189-193
Hieber, V., Siegel, G. J., Fink, D. J., Beaty, M. W. and Mata, M. 1991. Differential distribution of (Na,K)-ATPase alpha isoforms in the central nervous system. Cell. Mol. Neurobiol. 11: 253-262
Horisberger, J. D., Lemas, V., Kraehenbuhl, J. P. and Rossier, B. C. 1991. Structure-function relationship of Na, K-ATPase. Annu. Rev. Physiol. 53:565-584
Hossler, F. E. 1980. Gill arch of the mullet, Mugil cephalus III. Rate of response to salinity change. Am. J. Physiol. 238: R160-R164
Hootman, S. R. and Philpott, C. W. 1979. Ultracytochemical localization of Na+,K+-activated ATPase in chloride cells from the gills of a euryhaline teleost. Anat. Rec. 193: 99-129
Hwang, P. P. 1987. Tolerance and ultrastructural responses of branchial chloride cells to salinity changes in the euryhaline teleost Oreochromis mossambicus. Mar. Biol. 94: 643-649
Hwang, P. P., Fang, M. J., Huang, C. J. and Chen, S. T. 1998. Expressing of mRNA and protein of Na+-K+-ATPase a subunit in gills of tilapia. (Oreochromis mossambicus) Fish Physiol. Biochem. 18: 363-373
Hwang, P. P., Sun, C. M. and Wu, S. M. 1988. Characterization of gill Na-K-ATPase from tilapia Oreochromis mossambicus. Bull. Inst. Zool. 27: 49-56
Hwang, P. P., Sun, C. M. and Wu, S. M. 1989. Changes of plasma osmolarity, chloride concentration and gill Na-K-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100: 295-299
Hundal, H. S., Marette, A., Mitsumoto, Y., Ramlal, T., Blostein, R. and Klip, A. 1992. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na,K-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J. Biol. Chem. 267: 5040-5043
Jacob, W. F. and Taylor, M. H. 1983. The time course of seawater acclimation in Fundulus heteroclitus. J. Exp. Zool. 228: 33-39
Jensen, M. K., Madsen, S. S. and Kristiansen. K. 1998. Osmoregulation and salinity effects on the expression and activity of Na+,K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282: 290-300
Juhaszova, M. and Blaustein. M. P. 1997. Na pump low and high ouabain affinity α subunit isoforms are differently distributed in cells. Proc. Natl. Acad. Sci. USA 94: 1800-1805.
Karnasky, K. J. Jr., Kinter, L. B., Kinter, W. B. and Stirling, C. E. 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus hrteroclitus adapted to low and high salinity environmemts. J. Cell Biol. 70: 157-177
Kisen, G., Gallais, C., Auperin, B., Klungland, H., Sandra, O., Prunet, P. and Anderson, O. 1994. Northern blot analysis of the Na+, K+-ATPase α-subunit in salmoids. Comp. Biochem. Physiol. 107B: 255-259
Lavoie, L., Levenson, R., Martin-Vasallo, P. and Klip, A. 1997. The molar ratios of αand β subunits of the Na-K-ATPase differ in distinct subcellular membranes from skeletal muscle. Biochemistry 36: 7726-7732
Lee, T. H., Tsai, J. C., Fang, M. J., Yu, M. J. and Hwang, P. P. 1998. Isoform expression of Na+-K+-ATPase α-subunit in gills of the teleost Oreochromis mossambicus. Am. J. Physiol. 275: R926-R932
Lingrel, J. B. 1992. Na, K-ATPase: Isoform structure, function, and expression. J. Bioenerg. Biomember. 24: 263-270
Lingrel, J. B., Huysse, J. V., O’Brien, W., Jewell-Motz, E. and Schultheis, P. 1994. Na,K-ATPase: structure-function studies. Renal Physiol. Biochem. 17:198-200
Lingrel, J. B. and Kuntzweiler, J. 1994. Na+, K+-ATPase. J. Biol. Chem. 269:19659-19662.
Lytton, J., Lin, J. C. and Guidotti, G. 1985. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J. Biol. Chem. 260: 1177-1184
Madsen, S. S. and Naamansen, E. T. 1989. Plama ionic regulation and gill Na+/K+-ATPase changes during rapid transfer to sea water of yearling rainbow trout, Salmo gairdneri: time course and seasonal variation. J. Fish. Biol. 34: 829-840
Marshall, W. S. and Bryson, S. E. 1998. Transport mechanisms of seawater teleost chloride cells: a inclusive model of a multifunctional cell. Comp. Biochem. Physiol. 119A: 97-106
Mancera, J. M. and McCormick, S. D. 2000. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus. J. Exp. Zool. 287: 263-274
Marks, M. J. and Seeds, N. W. 1978. A heterogeneous ouabain-ATPase interaction in mouse brain. Life Sci. 23: 2735-2744
McCormick, S. D. Hormonal control of gill Na+,K+-ATPase and chloride cell function. In: Cellular and molecular Approaches to Fish Ionic Regulation, edited by C. M. Wood and T. J. Shuttleworth. New York: Academic, 1995, p. 285-315
McDonough, A. A., Geering, K. and Farley, R. A. 1990. The sodium pump needs its β subunit. FASEB J. 4: 1598-1605
McGrail. K. M., Philip, J. M. and Sweander, K. J. 1991. Immunofluorescent localization of the three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glial can express more than one Na,K-ATPase. J. Neurosci. 11: 381-391
Middleton, J. P. 1996. Direct regulation of the Na,K pump by signal transduction mechanisms. Miner. Electrolyte. Metab. 22: 293-302
Motais, R. 1970. Effects of actinomycin D on the branchial Na+,K+-dependent ATPase activity in relation to sodium balance of the eel. Comp. Biochem. Physiol. 34: 497-501
Pagliarni, A., Ventrella, V., Ballestrazzi, R., Trombetti, F., Pirini, M. and Trigari, G. 1991. Salinity-dependence of the properties of gill (Na++K+)-ATPase in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. 100B: 229-236
Peterson, G. L. 1978. A simplified method for analysis of inorganic phosphate in the presence of interfering substances. Analyt. Biochem. 84: 164-172
Pfeiler, E. and Kirschner, L. B. 1972. Studies on gill ATPase of rainbow trout (Salmo gairdneri). Biochem. Biophys. Acta. 282: 301-310
Sandor, T., DiBattista, J. A. and Mehdi, A. Z. 1984. Glucocorticoid receptors in the gill tissue of fish. Gen. Comp. Endocrinol. 68: 440-448
Sch?nrock, C., Morley, S. D., Okawara, Y., Lederis, K. and Richter, D. 1991. Sodium and Potassium ATPase of teleost fish Catostomus commersoni sequence, protein structure and evolutionary conservation of the α-subunit. Biol. Chem. Hoppe-Seyler. 372: 279-286
Seidelin, M., Madsen, S. S., Blenstrup, H. and Tipsmark, C. K. 2000. Time-course changes in the expression of Na+,K+-ATPase in gills and pyloric caeca of brown trout (Salmo trutta) during acclimation to seawater. Physiol. Biochem. Zool. 73: 446-453
Shamraj, O. I. and Lingrel, J. B. 1994. A putative fourth Na+/K+-ATPase αsubunit gene is expressed in testis. Proc. Natl. Acad. Sci. USA 91:12952-12956
Silva, P., Solomon, R., Spokes, K. and Epstein, F. 1977. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J. Exp. Zool. 199: 419-426
Skou, J. C. and Esmann, M. 1992. The Na,K-ATPase. J. Bioenerg. Biomembr. 24: 249-261
Sverdlov, E. D. 1991. The genes of Na, K-ATPase, a selfreview. Genetic 85:91-109
Sweander, K. J. 1985. Enzymatic properties of separated isozymes of the Na,K-ATPase. Sustrate affinity, kinetic cooperativity, and ion transport stoichiometry. J. Biol. Chem. 260: 11508-11513
Sweadner, K. J. 1989. Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta 988: 185-220
Therien A. G. and Blostein, R. 2000. Mechanism of sodium pump regulation. Am. J. Physiol. 279: C541-C566.
Tipsmark, C. K. and Madsen, S. S. 2001. Rapid modulation of Na+/K+-ATPase activity in osmoregulatory tissues of a salmoid fish. J. Exp. Biol. 204:701-709
Towle, D. W., Gilman, M. E. and Hempel, J. D. 1977. Rapid modulation of gill Na+-K+-Dependent ATPase activity during acclimation of the killifish Fundulus heteroclitus to salinity change. J. Exp. Zool. 202: 179-186
Weisbart, M., Chakraborti, P. K., Gallivan, G. and Eales, J. G. 1987. Dynamics of cortisol receptor activity in the gills of the book trout, Salvelinus fontinalis, during seawater adaptation. Gen. Comp. Endocrinol. 68: 440-448
Yao, K., Niu, P., Gac, F. L. and Bail, P. L. 1991. Presence of specific growth hormone binding sites in rainbow trout (Oncorhynchus mykiss) tissues: characterization of the hepatic receptor. Gen. Comp. Endocrinol. 81: 72-82
Zahler, R., Brines, M., Kashgarian, M., Benz, E. J. Jr. and Gilmore-Hebert, M. 1992. The cardiac conduction system in the rat express the alpha 2 and alpha 3 isoforms of the Na+,K+-ATPase. Proc. Natl. Acad. Sci. USA 89: 99-103
馮馨慧 1999 Na, K-ATPase α次單元在?郭魚滲透壓調節中的角色:mRNA和蛋白質的表現。臺灣大學漁業科學研究所碩士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/75258-
dc.description.abstract本研究的目的為探討Na+-K+-ATPase α isoforms在廣鹽性吳郭魚(Oreochromis mossambicus)適應海水過程中表現與活化的情形。在吳郭魚自淡水轉移到25?的海水過程中,我們測定血漿滲透壓、腦及鰓上Na+-K+-ATPase的活性及蛋白質量變化。結果顯示血漿滲透壓在吳郭魚轉移後3個小時開始升高,48小時後開始下降,168小時後血漿滲透壓值回復與淡水控制組相同。鰓上Na+-K+-ATPase活性在轉移海水後1-6個小時比淡水組增加約1.7倍,而腦中Na+-K+-ATPase活性在轉移後1-6個小時比淡水組增加約6.5倍。因此由腦中活性明顯的變化,顯示魚類中樞神經系統可能對血漿滲透壓值的變化非常敏感。由西方墨點法的實驗中,我們發現吳郭魚鰓上有Na+-K+-ATPase α1和α3兩種isoform表現,腦中只有Na+-K+-ATPase α3 isoform能被偵測到。鰓上Na+-K+-ATPase α1和α3 isoform的蛋白質量及腦上α3 isoform的蛋白質量在吳郭魚適應海水過程中皆有增加的情形,然而吳郭魚鰓及腦中Na+-K+-ATPase活性在蛋白質量增加前即有活化的情形,顯示此種短期調控Na+-K+-ATPase活性上升的機制可能與Na+-K+-ATPase post-translational的調節有關。zh_TW
dc.description.abstractThe purpose of the present study is to examine the expression and activation of Na+-K+-ATPase α isoforms in tilapia (Oreochromis mossambicus) during seawater (SW) adaptation. Plasma osmolarity and enzyme activity and protein expression of Na+-K+-ATPase in gills and brain were measured in tilapia transferred from freshwater (FW) to 25? SW. The results showed that plasma osmolarity increased 3 hr after transfer, then started to decrease at 48 hr, and recovered to the same level as the FW control at 168 hr after transfer. Na+-K+-ATPase activities increased about 1.7 folds in gills and 6.5 folds in brain during the first 6 hr. The remarkable activation of Na pump in tilapia brain during SW adaptation indicates that the central nervous system may be extremely sensitive to plasma osmolarity disturbance. In the western blot experimemt. both of the two isoforms,α1 and α3, were expressed in tilapia gills, but only α3 isoform could be detected in brain tissue of tilapia. The expression of the two isoforms was enhanced in both gills and brain during SW adaptation. However, activities of Na pump in both gills and brain were upregulated before protein changes in the tissues, indicating that post-translational regulations of Na+-K+-ATPase may be involved in the short-term regulation of Na pump activity.en
dc.description.provenanceMade available in DSpace on 2021-07-01T08:12:25Z (GMT). No. of bitstreams: 0
Previous issue date: 2001
en
dc.description.tableofcontents中文摘要. . . . . . . . . . . . . . . . . . . . l
英文摘要. . . . . . . . . . . . . . . . . . . . . 2
壹、前言. . . . . . . . . . . . . . . . . . . . . 3
一、Na+-K+-ATPase. . . . . . . . . . . . . . . . . . 3
二、Na+-K+-ATPase isoforms的多樣性. . . . . . . . . . . . . . . 4
三、Na+-K+-ATPase同功異構?的生理關聯. . . . . . . . . . . . . 5
四、Na+-K+-ATPase的調節方式. . . . . . . . . . . . . . . . . . . . . 7
五、廣鹽性魚類. . . . . . . . . . . . . . . . . . . . . 9
六、硬骨魚滲透壓調節的機制. . . . . . . . . . . . . . . . . . . . . 10
七、廣鹽性魚類適應海水過程. . . . . . . . . . . . . . . . . . . . . 1l
八、魚類Na+-K+-ATPase同功異構?多樣性. . . . . . . . . . . 13
九、研究目的. . . . . . . . . . . . . . . . . . . . . 15
貳、材料方法. . . . . . . . . . . . . . . . . . . . . 18
一、實驗動物. . . . . . . . . . . . . . . . . . . . . l8
二、實驗方法. . . . . . . . . . . . . . . . . . . . . l9
三、藥品的配置. . . . . . . . . . . . . . . . . . . . . 23
參、實驗結果. . . . . . . . . . . . . . . . . . . . 26
一、血清滲透壓變化. . . . . . . . . . . . . . . . . . . . 26
二、鰓上Na+-K+-ATPase活性變化. . . . . . . . . . . . . . . . 26
三、鰓上Na+-K+-ATPase isoforms蛋白質的表現. . . . . . . . . . . . . . . . . . . . . 27
四、腦內Na+-K+-ATPase活性變化. . . . . . . . . . . . . . . . . 27
五、腦內Na+-K+-ATPase isoforms蛋白質的表現. . . . . . . . . . . . . . . 28
肆、討論. . . . . . . . . . . . . . . . . . . . .30
一、吳郭魚適應25?海水過程. . . . . . . . . . . . . . . . . . . . 30
二、中樞器官面臨osmotic stress之反應. . . . . . . . . . . . . . 32
三、不同Na+-K+-ATPase isofoms在腦及鰓離子調節的角色. . . . . . . . . . . . . . . . 34
四、Na+-K+-ATPase短期與長期的調節. . . . . . . . . . . . . . . . . . . . 36
伍、未來研究方向. . . . . . . . . . . . . . . . . . . . 42
陸、參考文獻. . . . . . . . . . . . . . . . . . . . 43
染、圖. . . . . . . . . . . . . . . . . . . . . 54
dc.language.isozh-TW
dc.title海水適應過程?郭魚(Oreochromis mossambicus)腦及鰓鈉幫浦之表現及活化zh_TW
dc.titleDifferential stimulation of enzyme activity and protein level of Na+-K+-ATPase in the organs of Tilapia (Oreochromis mossambicus) upon acute seawater challengeen
dc.date.schoolyear89-2
dc.description.degree碩士
dc.relation.page67
dc.rights.note未授權
dc.contributor.author-dept生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved